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Abstract 
The main purpose of this contribution is to develop realistic prediction digital soil maps in order 
to increase their visuality, and to evaluate and compare the performance of different modeling 
techniques: a) Kriging, b) Artificial Neural Network – Multilayer Perceptron (ANN-MLP) and 
c) Multiple Polynomial Regressions (MPR). The following criteria were used to determine selec-
tion of the testing site for the modeling: (1) intensive metal ore mining and metallurgical process-
ing; (2) geomorphological natural features; (3) regular geological setting, and (4) the remaining 
minefields. The success of Digital Soil Mapping and the plausibility of prediction maps increas-
es with the availability of spatial data, the availability of computing power for processing data, 
the development of data-mining tools, geographical information systems (GIS) and numerous 
applications beyond geostatistics. Advanced prediction modeling techniques, ANN-MLP and 
MPR include geospatial parameters sourced from Digital Elevation Models (DEM), land use and 
remote sensing, applied in combination with costly and time-consuming soil measurements, de-
veloped and finally incorporated into the models of spatial distribution in the form of 2D or 3D 
maps. Innovative approaches to modeling assist us in the reconstruction of different processes 
that impact the entire study area, simultaneously. This holistic approach represents a novelty in 
contamination mapping and develops prediction models to help in the reconstruction of main 
distribution pathways, to assess the real size of the affected area as well as improving the data 
interpretation. 
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gies used for mass production generate an enormous quantity of 
mining waste which is considered hazardous due to the presence 
of toxic metals (SINGH et al., 2010; NAVARRO et al., 2008). Due 
to past and present mining activities, many worldwide rivers are 
significantly affected by multiple metal contamination (FERRE-
IRA et al., 2016). Metal containing particles are quite often trans-
ported over large distances by water. This can affect the alluvial 
sediments several hundred kilometres away from the main source 
of contamination (ŠAJN et al., 2011; YI et al., 2012; ZHAO et al., 
2013; PAVLOWSKY et al., 2017). 

The soil maps can be generally understood as a graphic re-
presentation for transmitting information about the spatial distri-
bution of soil attributes (YAALON, 1989). According to 
MCBRATNEY et al. (2003), traditional soil mapping techniques 
mostly depend on ground-based surveys but they rarely inform 
us about the spatial distribution of soil properties at the desired 
resolution over the landscape.

Complex interactions between the soil and geospatial parame-
ters of site factors sourced from Digital elevation models (DEM) 
is crucial for understanding the main spatial distribution path-
ways. Their mutual coherence can be integrated by modeling 
techniques with an advanced prediction (ALIJAGIĆ, 2013). En-
vironmental surveys are usually based on sampling on the rela-
tively small and quite well-delimited system, but in general, the 
measurements represent a continuum in space from which the 
sample has been drawn (OLIVER & WEBSTER, 2014). A great 
potential for improving predictive soil mapping (PSM) tech-
niques and understanding the relationships between soils and the 
environment, has been created after the increase in computer ef-
ficiency and capacity, geo-information technology, data availabi-

1. INTRODUCTION
The soil can be characterised as a natural purifying agent and a 
place where pollutants sink and/or accumulate. Metals occur in 
rocks and in soils whether in the soil solution, organically bound, 
bound to hydrous oxides of Fe, Mn and Al, exchangeable, acid-
soluble (bound to carbonates, phosphates, etc.) or structurally 
bound in the residual fraction (KABATA-PENDIAS & PEN-
DIAS, 2001). When the metal retention capacity of the soils is 
exceeded (ROMIĆ, 2012) and when soil conditions are changed 
(e.g. reaction kinetics, pH and Eh values, organic matter content, 
microorganisms, etc.), simple ions can be released into solution, 
become mobile and thus accessible to plants (KABATA-PEN-
DIAS & PENDIAS, 2001). Sources of trace elements in ground-
water can be natural, (originating from earth materials), or the 
elements can be introduced by industrial activities, landfill, min-
ing and transportation (BRADL, 2005). Important sources of 
trace metals input into the soils are from the metals industry. 
Starting from mining and milling operations, concentrating, sin-
tering and metal ore transportation to the disposal of tailings. 
Smelting processes can include atmospheric discharges, blown 
dust and cause acidification of water bodies (DUDKA & 
ADRIANO, 1997). It is known that the majority of ore minerals 
accommodate various other trace metals as minor inclusions, 
causing contamination with major and minor ore metals in areas 
surrounding mines and smelters (SHALLARI et al., 1998; CHO-
PIN & ALLOWAY, 2007; AL-KHASHMAN & SHAWABKEH, 
2009). 

The metal ore mining and processing are some of the largest 
releases of trace elements causing a considerable impact on the 
surrounding environment. Obsolete metal production technolo-
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lity and demand for accurate and reliable maps (MCBRATNEY 
et al., 2003; SCULL et al., 2003; BAGHERI BODAGHABADI 
et al., 2015; ZHANG et al., 2017). It requires the creation of spa-
tial soil information based on numerical models, which account 
for spatial and temporal variations in soil properties on the basis 
of soil information and related environmental variables (LAGA-
CHERIE & MCBRATNEY, 2007).

The main purpose of this study was to develop a visualisa-
tion model of contamination using linear and nonlinear mathe-
matical methods that combine a sparse chemical analysis and 
various geospatial parameters in Stavnja Valley (Bosnia and Her-
zegovina) but at the same time to evaluate and compare the per-
formance of different modeling techniques: Kriging, Artificial 
Neural Network – Multilayer Perceptron (ANN-MLP) and Mul-

tiple Polynomial Regressions (MPR). For this reason, five specific 
purposes of the present study were (1) to include various geospa-
tial parameters in linear and nonlinear modeling; (2) to identify 
the main distribution pathways and change in concentrations ac-
cording to the distance from the source of contamination; (3) 
model verification; (4) to assess the real size of the affected area, 
and (5) to provide an optimal methodology for geochemical re-
searchers in areas with restricted sampling conditions.

2. MATERIALS AND METHODS
2.1. Description of the study area 
The river Stavnja has a length of about 35 km, located in Central 
Bosnia and Herzegovina, north of the capital Sarajevo (Fig. 1). 
Approximately 30,000 people inhabit this Valley, mostly settled 

Figure 1. Location of the study area.
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into the small cities of Vareš and Breza. The Stavnja River catch-
ment has been known for intensive mining and metallurgic ac-
tivities for more than 100 years. Besides these activities, the val-
ley was selected for study due to several other reasons: its unique 
geological setting – especially the metallogenic belt, the geomor-
phological characteristics that affect the contamination halo and 
remaining minefields from the last war, 1992-1995. 

The anthropogenic impact in the municipality of Vareš can 
be reflected through the three abandoned iron ore deposits 
 (Smreka, Brezik and Droškovec), an abandoned Pb-Zn-Ba de-
posit of Veovača, the abandoned ironwork at Vareš, and brown 
coal mining in the southern part of the study area. High concen-
trations of particular elements are released into the environment 
not only by anthropogenic activities but also by natural erosion 
and weathering reactions of the parental rocks that add to the 
complexity of the environmental assessment (ALIJAGIĆ, 2013). 

Problems of contamination along the river can be demon-
strated as the anisotropic appearance between the layered (iso-
tropic) lithological units, which can be solved using advanced 
linear and nonlinear modeling techniques instead of a denser 
sampling grid which is restricted by the remaining minefields at 
5-6 % of the study area. The physiography of the region displays 

great variability. Contrasting landscapes are observed from the 
mountain environment in the northern part of the study with an 
altitude of more than 1000 m, to the southern part at approxi-
mately 400 m (Fig. 2). 

2.2. Geological description of the study area
The outcropping stratigraphic sequence exposes rock formations 
spanning the Triassic to the Cretaceous, and more recent times. 
Ten major lithological units (Fig. 3) had been isolated, ranging 
from the oldest to the youngest in a N-S direction. The most im-
portant geotectonic unit of the Vareš metallogenic district be-
longs to the Central ophiolite zone. Vareš, siderite–haematite 
sedi mentary exhalative (SEDEX) deposits at Smreka, Droškovac 
and Brezik are the locus typicus of mineralisation of the Mid-
Triassic. The deposits contain hydrothermal, stratiform siderite–
haematite–chert beds. The mineralisation forms part of the Ani-
sian and Ladinian sequences and displays distinct vertical zoning, 
reflecting a gradual change of redox conditions in the depositional 
environment. The Veovača Pb, Zn, Ba deposit contains ore  breccia 
or ore conglomerates with dm to m sized clasts cemented by  barite 
and Pb–Zn sulphides. The barite from Veovača is typical for 
 Triassic SEDEX deposits elsewhere in the Dinarides (PALINKAŠ 
et al., 2008).

2.3. Sampling, sample preparation and chemical analyses 
Regarding the primary purpose of research, previous experience 
(ŠAJN, 2005, 2006; ALIJAGIĆ, 2008; ALIJAGIĆ & ŠAJN, 2006, 
2010; STAFILOV et al., 2008a, 2008b), and some sampling dif-
ficulties (narrow gorge, inaccessible terrain and remained mine-
fields), resulted in preparation of a sampling grid so that the soil 
profiles were raised transverse to the river flow (Fig. 4). Respect-

Figure 2. Land use map. Figure 3. Isolated lithological units.
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ing the changes of environmental chemism according to the dis-
tance from the source of contamination, a change in altitude, and 
a transport mode, but at the same time understanding better the 
geogenic and anthropogenic influence on the level of trace ele-
ment changes, the entire survey area was covered with 12 profile 
lines set to cross the river flow. Some additional samples had been 
collected at the edges of the study area and some lithological units 
that were not covered by the profile lines. In the urban and indus-
trial zones, the sampling grid is slightly more dense (Fig. 4). The 
total number of soil sampling sites is 111 but at each site, samples 
were collected from two depths: in the topsoil (0 - 5 cm) and sub-
soil (20 - 30 cm) respectively. 

Initially, the samples were air-dried and subsequently dried 
in a fan drier at 40 °C. All samples were analysed in the ACME, 
Ltd. laboratory in Vancouver, Canada (ACME Labs, 2010, 2011). 
Determination of 36 chemical elements (Ag, Al, As, Au, B, Ba, 
Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, 
P, Pb, S, Sb, Sc, Se, Sr, Th, Ti, Tl, U, V, W and Zn) was performed 
by inductively coupled plasma mass spectrometry (ICP-MS) af-
ter aqua regia digestion, during which we assisted with the results 
for precision and trueness based on ALIJAGIĆ (2013). 

3. DATA ACQUISITION AND DATA PROCESSING
All data processing and calculations, geostatistical data interpre-
tation and visualization (mapping) have been performed using 
the following software: Statistica (Stat Soft Inc., 2012), Autodesk 
MAP 3D (Autodesk Inc., 2012), ArcINFO (ESRI Inc., 2004) and 
Surfer (Golden Software Inc., 2012).

In recent years, geographical information systems (GIS) 
have been used for spatial data management and manipulation. 
For this purpose various spatial data were acquired by digitaliza-
tion of existing topographic maps: (1) Vareš 4 (475-4) in scale 
1:50,000; Vareš 4-1 (475-4-1); (2) Vareš 4-2 (475-4-2), Vareš 4-3 
(475-4-3), Vareš 4-4 (475-4-4), Sarajevo 2-2 (525-2-2), Sarajevo 
2-1 (525-2-1) in scale 1:25,000 (provided by the Geodetic survey 
of Bosnia and Herzegovina); (3) Google Earth maps (Google Inc., 
2010); (4) maps Breza-Vareš, scale 1:50,000; (5) Breza-Podlugovi, 
Brgule, Karaule, in scale 1:10,000 (provided by BH Mine Action 
Centre, in Sarajevo); (6) geological maps Vareš (L 34-133) and 
Sarajevo (K 34-1) in scale 1:100,000 (provided by Geological Sur-
vey of Slovenia and Geological Survey Federation of Bosnia and 
Herzegovina); (7) 80 m SRTM Digital Elevation Model (CGIAR 
Consortium for Spatial Information, 2011); (8) 30 m ASTER Digi-
tal Elevation Model (U.S. Geological Survey, 2011a) and (9) 
Landsat multispectral satellite images – 7 bands (U.S. Geological 
Survey 2011b).

All the aforementioned maps were used to obtain as much 
geospatial data as possible to be included in the database. The 
database includes the following information for 222 samples: 
Identification number, Sample label, Sampling material, Land use 
units, Lithological units, Defined zones, Latitude, Longitude, Ab-
solute distance from the ironworks chimneys (Iron open pits, 
Smre ka and Brezik; Ironworks Vareš, Breza coal mine) (Fig. 5A), 
Elliptical distance from the ironworks chimneys (Fig. 5B), Dis-
tance from the river Stavnja (Fig. 5C), Altitude (Fig. 6A), Altitude 
above the Stavnja valley bottom (Fig. 6B), Terrain Slope (Fig. 6C), 
Aspect, Plan Curvature (Fig. 7A), Profile Curvature (Fig. 7B), 
Tangent Curvature (Fig. 7C), and Landsat spectral bands 1 - 7 
(Table 1, Fig. 8). Beside the aforementioned geospatial data and 
multispectral image bands, this database includes the analytical 
data (26 selected elements: Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, 
Fe, Ga, Hg, La, Mg, Mn, Mo, Ni, Pb, Sb, Sc, Th, Ti, Tl, V, W and 
Zn). These elements represent mostly athropogenically entered 
into environment (Pb-Zn-Hg-Cd-Cu-Bi-Ag-Sb-Mo-W-Mn-Ba-
Fe-Ti) or they are mainly influenced by heterogeneous lithology 
(Ni-Cr-Co-Mg-Th-La-As-Sc-Al-Ti-V-Ga) which content is deter-
mined by the parent material and soil properties (ALIJAGIĆ et 
al., 2015).

For modeling of the spatial distribution of a group of ele-
ments with Artificial Neural Network and Multiple Polynomial 
Regression, a recall grid was used. This means that the whole 
study area was divided into 50 x 50 m grid cells. The total num-
ber of recall points is 41,471. This database includes only geospa-
tial data and the Landsat multispectral image bands mentioned 
before.

3.1. Topographic and geological data
The maps are constructed with the limitation of representing 3D 
real-world objects into a 2D representation, which involves some 
distortion of the shape, area, distance and direction of the spatial 
objects. Since the topographic maps (scale 1:25,000 and 1:50,000) 
were ambulated in the late ̀ 70s, to get more realistic spatial data, 
the maps from Google Earth and multispectral satellite images 
were combined with them. Particular land-use units are digi-

Figure 4. Sampling sites with determined zones.
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talized and isolated directly from Google Earth in the form of 
KML files. Such maps have been georeferenced, which means 
that we defined their existence in physical space, establishing lo-
cations in terms of map projections or a coordinate system. Ac-
cording to HILL (2006), the term is used both when establishing 
the relationship between raster or vector images and coordinates, 
and when determining the spatial location of other geographical 
features. This procedure is thus imperative to data modeling in 
the field of GIS and other cartographic methods. When data from 
different sources needs to be combined and then used in a GIS 
application, it becomes essential to have a common referencing 
system. Different maps may use different projection systems. 
Georeferencing tools contain methods to combine and overlay 
these maps with minimum distortion.

Beside the topographic maps, the basic geological map (scale 
1:100,000) has also been digitalized and vectored. Isolation of the 
major lithological units is also an important step for the determi-
nation of the natural and anthropogenic background. The maps 
(1:25,000 and 1:10,000) of the remaining minefields and possible 

minefields were obtained from the BH Mine Action Centre, in 
Sarajevo. Data about the minefields were isolated from them and 
incorporated into the previously digitalized topographic maps.

The given data were presented into three different projection 
systems: topographic, geological and minefield maps in the Gauss 
Kruger projection (zone 6) with a Hermanns-Kogel datum; the 
Google Earth and ASTAR in Unprojected Lat/Long projection 
with a World Geodetic System 1984 (WGS84) datum; and satel-
lite images in the Universal Transverse Mercator (UTM 34N) 
projection with a WGS84 datum. All the aforementioned data 
have been converted into one projection system i.e. Gauss Krüger.

3.2. DEM and Terrain modeling (geomorphometry)
A Digital Elevation Model (DEM) is a quantitative representation 
of the Earth’s surface providing basic information about the ter-
rain relief (GUTH, 2006). A DEM is an important tool for geo-
morphometry, as its derived attributes (such as slope, aspect, 
drainage area and network, curvature, topographic index, etc.) 
are important parameters for information extraction or assess-

Figure 5. A – Absolute distance from the ironworks chimneys; B –Elliptical distance from the ironworks chimneys (ratio 1/5); C – Distance from the river Stavnja.
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ment of any process using terrain analysis (WOLOCK & PRICE, 
1994). Providing all these geomorphometrical data, a DEM is 
prerequisite in different applications such as water flow modeling 
(JAIN & SINGH, 2003), volcanic hazards (VASSILOPOULOUA 
et al., 2002), terrain visualization and mapping (SPARK & WIL-
LIAMS, 1996), flood simulation and management (RAMLAL & 
BABAN, 2008, HONGHAI & ALTINAKAR, 2011), climate and 
meteorological studies (THORNTON et al., 1997), etc. The out-
comes of the models depend on the accuracy of the DEM 
(ZHANG & MONTGOMERY, 1994; MUKHERJEE et al., 2013). 
The accuracy of a DEM is especially important when used for 
the spatial prediction of soil attributes, as differences in topogra-
phy play a crucial role in the distribution of pedological relation-
ships (THOMPSON et al., 2001). Like all models, DEMs contain 
a certain degree of error. Errors in DEM datasets are usually re-
lated to (1) data errors, (2) measurement errors and (3) processing 
errors (BURROUGH, 1986; WISE, 1998; WECHSLER, 2003). 
They can also be characterised as gross errors, systematic errors 
and random errors. The main question to be answered here is to 

which level of significance do certain errors extend (FISHER & 
TATE, 2006)?

Figure 5 provides the following geospatial information: 
(A) a cyclic distance from the Vareš ironwork (the main source 
of contamination); (B) an elliptical distance from the Vareš iron-
works; and (C) the distance from Stavnja. These three distance 
shapes are prepared at a scale of 1:5. The cyclic and elliptical 
 distances have been calculated from the ironworks chimney. For 
easier understanding, each distance is represented by a different 
colour in seven equal percentile classes. Several pieces of morpho-
logical spatial information: (A) an altitude; (B) an altitude above 
the bottom of the Stavnja valley, and (C) a slope, are provided in 
Fig. 6. 

Terrain Aspect calculates the downhill direction of the steep-
est slope (i.e. the dip direction) at each grid node, with values 
eported as azimuths. The dip direction is perpendicular to the 
contour lines on the surface and is exactly opposite the uphill 
gradient direction. Terrain Slope is reported in degrees from zero 
(horizontal) to 90 (vertical). It is based on the direction of the 

Figure 6. A – Altitude above sea level (absolute); B – Altitude above the bottom of the Stavnja river valley (relative); C – Terrain Slope.
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steepest descent or ascent at that point (Terrain Aspect). This 
means that for a particular point on the surface the gradient di-
rection can change. 

Plan Curvature calculates the curvature of the surface in the 
horizontal plane or the curvature of the contour. Negative values 
indicate divergent water flow over the surface, and positive val-
ues indicate convergent flow. Profile Curvature measures the cur-
vature of the surface in the direction of the gradient. It determines 
the downhill or uphill rate of change in the slope in the gradient 
direction (opposite of slope aspect direction) at each grid node. 
Grid files of Profile Curvature produce contour maps that show 
isolines of a constant rate of change of the steepest slope across 
the surface. Negative values are convex upward and indicate the 
accelerated flow of water over the surface. Positive values are 
concave upward and indicate slowed flow over the surface. Tan-
gential Curvature measures curvature in relation to a vertical 
plane perpendicular to the gradient direction, or tangential to the 
contour. The negative and positive areas are the same as for Plan 
Curvature, but the curvature values are different. Tangential Cur-

vature measures the curvature of the surface in the vertical plane 
perpendicular to the gradient direction. 

The mathematical definitions, the general review of the 
methods, and applications of topographic analysis (terrain slope, 
terrain aspect, plan curvature, profile curvature and tangential 
curvature) were taken from MITASOVA & HOFIERKA (1993) 
and MOOR et al. (1993).

3.3. Satellite images
Since 1972, Landsat satellites have continuously acquired space-
based images of the Earth’s land surface, coastal shallows, and 
coral reefs and have since provided worldwide science and re-
source management communities with an archive of space-based 
land remotely sensed data – a valuable resource for people who 
need this data for their work (U.S. GEOLOGICAL SURVEY, 
2011c).

Landsats 5 and 7 each complete approximately 14 full orbits 
of the Earth each day. While each satellite has a 16-day full Earth 
coverage cycle, their orbits are offset to allow 8-day repeat covera ge 

Figure 7. A – Plan terrain curvature, B – Profile terrain curvature, C – Tangent terrain curvature
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of any Landsat scene area on the globe. Landsat 7 carries the 
 Enhanced Thematic Mapper Plus (ETM+), with 30-metre visible, 
near-IR, and shortwave infrared bands, a 60-metre spatial resolu-
tion thermal band, and a 15-metre panchromatic band (Table 1). 

Moreover, since 2008 the USGS has freely provided all ar-
chived Landsat images, along with newly acquired Landsat 7 
(launched in 1999) ETM+ SLC-off and Landsat 5 (launched in 

1984). TM images with less than 40 % cloud cover, thereby ena-
bling free access to multiple images of the same sectors. It depends 
what you need as there are many Landsat data formats: GeoTIFF, 
MTL, GCP, WO) (U.S. GEOLOGICAL SURVEY, 2011c).

In order to evaluate the capability of mapping contaminated 
areas from both Landsat TM and ETM data, we processed and 
analysed two available images for the study area (187 paths and 

Figure 8. Relative intensity of radiation Landsat spectral bands. A – Visible spectrum, 0.45 – 0.69 µm (Bands 1 - 3); B – Infrared spectrum, 0.76 – 0.90 µm (Band 4); C 
– Thermal radiation, 10.4 - 12.5 µm.

Table 1. Landsat spectral bands.

Spectral bands Wavelength (µm) Resolution (ms) Use

Band 1 (blue) 0.45–0.52 30 Bathymetric mapping; distinguishes soil from vegetation; deciduous from coniferous vegetation.

Band 2 (green) 0.52–0.61 30 Emphasizes peak vegetation, which is useful for assessing plant vigour.

Band 3 (red) 0.63–0.69 30 Emphasizes vegetation slopes.

Band 4 (IR) 0.76–0.90 30 Emphasizes biomass content and shorelines.

Band 5 (IR) 1.55–1.75 30 Discriminates moisture content of soil and vegetation; penetrates thin clouds.

Band 6 (thermal) 10.4–12.5 120/60 Useful for thermal mapping and estimated soil moisture.

Band 7 (IR) 2.08–2.35 30 Useful for mapping hydrothermally altered rocks associated with mineral deposits.
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29 rows). Extracting information from satellite imagery often in-
volves image interpretation techniques as well as GIS integration 
of other spatial data. Multispectral satellite imagery offers several 
advantages, such as a large number of data records, the availabi-
lity of repeated images of a single place at different times, and the 
fact that virtually the entire planet is covered. We used images 
from 1990, in a period of intensive mining and smelting, and from 
2005 after the civil war, a period when production was stopped.

3.4. Data transformation
Transforming data means performing the same mathematical ope-
ration on each piece of original data the main purpose of which 
is to reduce the difference between extreme values (GRINGAR-
TEN & DEUTSCH, 2001). It is often observed that environmen-
tal variables are Log-normal (KRIGE, 1951, 1960; ROSE at al., 
1979) or positively skewed (ZHANG et al., 1995; ZHANG & SE-
LINUS, 1998), and data transformation is necessary to normalise 
such data sets. The Box-Cox transformation represents one of the 
most frequently used transformations in environmental sciences 
and geosciences where power transformation is needed (BOX & 
COX, 1962; JOBSON, 1991; ZHANG et al., 1998; MCGRATH, 
et al., 2004). 

The Box-Cox transformation is given by:

 y X
=

−
≠

l

l
l

1
0;

where y is the transformed value, and x is the value to be trans-
formed. 

3.5. Modeling techniques
3.5.1. Kriging
Kriging is one of the most popular geostatistical prediction 
methods successfully applied widely in the estimation and 
mapping of soil attributes in unsampled areas giving the best li-
near unbiased prediction of the concentration with minimal va-
riance (LI et al., 2016). Kriging has become a quite effective tool 
for the study of hazard risk assessments and spatial uncertainty 
in general (GOOVAERTS, 1999, 2001), but at the same time it 
enables quantification of the main spatial characteristic of soil 
attributes and spatial interpolation methods considering only the 
neighbouring points of estimation data (CARLON et al., 2001; 
THEODOSSIOU & LATINOPOULOS, 2006). The most com-
monly used geostatistical prediction method is ordinary kriging 
that uses a semivariance function based on the assumption that 
nearby objects tend to be more similar than those that are farther 
apart.

An unbiased estimator of the semivariance function is half 
of the average squared difference between paired data values 
(OLIVER & WEBSTER, 2014):

 y h
N h
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where γ(h) is the semivariance at a given distance h; and N(h) is 
the number of sample pairs in h, and z(xi + h) and z(xi) are sample 
values at two points separated by h.

The variogram model mathematically specifies the spatial 
variability of the data set and the resulting grid file. The interpo-
lation weights, which are applied to data points during the grid 
node calculations, are direct functions of the variogram model 
(WEBSTER & OLIVER, 2001). The graphical display is the fi-
nal goal of many environmental scientists in the chain of steps 

that begins with sampling the prime objective of which is to uti-
lise the power of the visual appearance (OLIVER & WEBSTER, 
2014).

3.5.2. Artificial neural network – Multilayer Perceptron
An Artificial Neural Network (ANN) is an information-proces-
sing paradigm that is inspired by biological nervous systems, 
which is both relatively easy to implement and very reliable (AIT-
KENHEAD et al., 2012). It is composed of a large number of 
highly interconnected processing elements (neurons or nodes) 
working in unison to solve specific problems. An ANN is confi-
gured for a specific application, such as pattern recognition or 
data classification, through a learning process. Learning in bio-
logical systems involves adjustments to the synaptic connections 
that exist between the neurons (ŽIBRET et al., 2012).

The development of layered feed-forward ANNs began in 
the late 1950s by Rosenblatt‘s perceptron as the first model for 
learning with a teacher (i.e. supervised learning), which is often 
referred to as a single-layer perceptron. The multilayer per-
ceptron (MLP) is one of the most popular feedforward ANNs that 
performs tasks such as function fitting and pattern recognition 
problems (ASCE, 2000). MLP can be used for the classification 
of linearly inseparable patterns and can also work as universal 
approximators. MLPs are feedforward neural networks (FNNs) 
with one or more layers of units between the input and output 
layers (DU & SWAMY, 2006; AGIRRE-BASURKO et al., 2006; 
DANANDEH & NOURANI, 2017). 

The output of a neuron is given by:

 x = − = −
=
∑w x b w x bi i

T

i

n

1
y = s x( )

whereis the ith input, wi is the link weight from the ith input, w 
= (wi ... wn)T, x = (x1 ... xn)T, b is a threshold or bias, and is the 
number of inputs. The activation function is usually some con-
tinuous or discontinuous function mapping the real numbers into 
the interval (-1,1) or (0,1) (DU & SWAMY, 2006). A different 
function can be used as an activation function but the most used 
is the sigmoidal activation function. A standard sigmoidal acti-
vation function has the following form:

s x x( )
�

=
+
1

1 e
The success of the method can be laid down for the follow-

ing reasons: (1) They can model extremely complex systems and 
due to their nature can be used to model nonlinear natural sys-
tems (linearity in the sense of mathematical properties of addi-
tivity and homogeneity); when using linear algebra (such as most 
of the multivariate statistics) to describe nonlinear systems we 
always have to make approximations; (2) There is no limitation 
with the dimensionality of the problem; it can be arbitrary, de-
pending on the CPU speed and memory, and (3) simple and suc-
cessful operation due to well-developed learning algorithms 
(ŽIBRET et al., 2012).

3.5.3. Multiple polynomial regressions
Multiple regression, the term first used by Pearson (PEARSON, 
1908 in KELECHI, 2012). refers to a regression application the 
main purpose of which is to learn more about the relationship 
between several independent or predictor variables and a depen-
dent or criterion variable. Polynomial regression is a special case 
of multiple regression in which the relationship between the in-
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dependent variable and the dependent variable is modelled as an 
mth order polynomial (OSTERTAGOVÁ, 2012). The general 
polynomial regression model is given by:

Y x x x xi m
m

i= + + + + + +b b b b b e0 1 2
2

3
3 ...

where, for a set of I observations, Yi is the predictand variable, β0 
is a regression constant, β1,β2,…,βm are the coefficients of the x, 
x2,…, -xm independent variables (predictors), m is the order of the 
polynomial, and ƐI is the model error (the difference between ob-
servations and predicted values).

Although polynomial regression fits a nonlinear model to the 
data, the estimation problem is linear because the regression co-
efficients are linear in the parameters (KERROU et al., 2017). The 
goal of the regression analysis is to determine the values of the 
parameters of the regression equation and then to quantify the 
goodness of the fit in respect of the dependent variable (AGIRRE-
BASURKO et al., 2006). Two following values: R2 and adjusted 
R2 describe how well the model fits the data. All regression mod-
els provide information regarding the influence of the combined 
interactions of the estimator variables on the response. However, 
the major conceptual limitation of the regression techniques is 
that one can only ascertain relationships, but never be sure about 
the underlying causal mechanism.

4. RESULTS AND DISCUSSION
4.1. Linear mathematical methods vs. artificial neural 
networks (ANN-MP)
The collection of geospatial data has already begun with data ac-
quisition. From the land use map and Digital Elevation Model 
(DEM), many geospatial data had been sourced and later used in 
modeling. The main purpose of using such parameters (data) is 
the construction of a spatial distribution map of particular ele-
ments as a final product. Geochemical maps, as final products are 
necessary for understanding both natural and anthropogenic dis-
tributions. 

Due to the high cost and time-consuming nature of soil sam-
pling, research in developing methods for the creation of soil 
maps from sparse soil data is becoming increasingly important. 
In recent years, the development of prediction methods (linear 
and nonlinear) that use secondary attributes sourced from the 
DEM, land use, and remote sensing in combination with sparse 
and expensive soil measurements has been sharpening the focus 
of this research. Consequently, the potential for applying such 
information to soil mapping is greater than ever before. Applying 
various modeling techniques, different prediction methods for 
soil types were compared, but we also choose the best combina-
tion of prediction method and secondary information. Various 
modeling techniques help us reconstruct different processes that 
influenced the entire study area simultaneously. Their main pur-
pose is not only the isolation of hotspots with the highest concen-
trations but also a spatial distribution pattern of particular trace 
elements. Simultaneously they distinguish natural and anthropo-
genic influences as well as the transportation pattern, such as at-
mospheric or water transport of trace elements. Studying this 
pattern will help in better interpretation and understanding of the 
processes that occurred in whatever particular period of time, 
they are related to.

All the aforementioned data were used for preparing two 
spatial distribution models using two prediction methods, mod-
eling by Multiple Polynomial Regression (MPR) and Artificial 
Neural Network - Multilayer Perceptron (ANN-MP), respec-

tively. For both modeling methods, a recall grid has been used. 
The whole study area was divided into 50 x 50 m grids. The total 
number of recall points is 41,471. Besides the standard position 
parameters, each particular recall point is also described by some 
new geospatial parameters. Both methods were treated using the 
same conditions and same software packages, Statistica 11 (Stat 
Soft Inc., 2012) and Surfer 11 (Golden Software Inc., 2012). The 
Kriging is a linear method and only considers the sparse mea-
sured data.

Modeling by ANN-MP was undertaken using a large amount 
of input data; 240 of the hidden units and 25 train networks. Aim-
ing for the best model, we tried changing some input data; the 
number of neurons, as well as the number of training networks. 
Our experience showed that more neurons and more neural ar-
chitectures produced better results. Models were constructed first 
for each particular element, then for groups of elements extracted 
by factor analysis. Each particular model is trained to 25 net-
works but only 5 logical networks were retained, and finally, an 
average model of 5 retained networks was calculated. Each train-
ing model contains a summary table with the following param-
eters: Training perfection, Test perfection, Validation perfection, 
All perfection, Training error, Test error, Validation error, Train-
ing algorithm, Hidden activation, and Output activation. Many 
data conversions, corrections and transformations had to be done 
prior to obtaining useful models. The main reason that we used 
so many different input data in modeling by MPR, lies in the fact 
that this method is very demanding compared to the ANN-MP.

The developed methods and procedures, especially ANN-
MP, MPR as a control method and Kriging as a modified, world-
wide successfully established method, have been used to predict 
the concentration of four leading elements Pb, Ni, Ti, and As from 
their previously identified geochemical association. Lead is a 
typi cal anthropogenic element, introduced solely by mining and 
smelting activities. Nickel and titanium are typical natural ele-
ments, whose enrichment depends mainly on the parental mate-
rial degradation, and the vague distributiom of arsenic can be 
probably explained with its enrichment in independent outcrop-
ping rocks (AIJAGIĆ et al., 2015). Further processing of the fac-
tor score values is avoided because they represent the new syn-
thetic variables which are calculated and presented as the 
standard values. This means that those methods can only deter-
mine relative enrichment relationships. In any case, with any cer-
tainty, we cannot judge the prediction of the absolute values.

The essence of the whole approach is that under the same 
conditions all three tested methods should give some stable dis-
tribution of results of the areas with anthropogenically enriched 
elements as well as examining natural enrichment. The expected 
results must be stable in all cases. Procedures, approaches, pre-
paring data and calculations were being developed over time un-
til they become stable. The stable procedures are procedures un-
der the same conditions that correctly predict the distribution of 
elements that represent the geochemical characteristics of the 
landscape. The estimation of reliability of the predictions and 
model applicability lies in the fact that all the given models are 
repeatable. So the developed procedures are not random or spe-
cific to a particular item or an isolated area, but such models can 
be applied anywhere, even in the distribution of some other ob-
servations. We critically evaluated the methods according to the 
significance of the applied transformations, the similarity be-
tween models, as well as the stability of predictions. Basically, 
this represents the biggest contribution of this paper.
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Since computer equipment allows us to prepare a very large 
number of solutions in real-time, we used the principle which was 
used for knotting the Enigma coding system (the German coding 
system in the Second World War). The principle is very simple. 
Discard illogical solutions and focus on those that are logical. The 
basic principle (principle of Ockham cat) was applied: everything 
that happens around us must be logical and indeed simple.

4.2. Contamination and natural enrichment of chemical 
elements (application of models)
4.2.1. Anthropogenic impact
The spatial distributions of three common anthropogenic chemi-
cal elements Cd, Pb, and Zn according to the NewDutch list (ES-
DAT, 2013) are presented in Fig. 9. For a graphical display of spa-
tial distribution, the maps with target and intervention values 
have been used, where different colours represent different con-
centration arrangements. In the scale used for its distribution we 
used five ranges: two green colours represent the ranges under 
the target values; the light green is one half of the target values; 

the yellow range represents the target values, the orange is one 
half of the sum of both, target and intervention, and the red range 
represents the intervention values.

According to the NewDutch list (ESDAT, 2013), the target 
value for Cd is 0.8 mg/kg, for Pb 85 mg/kg, and for Zn 140 mg/kg. 
The intervention value for Cd is 12 mg/kg, for Pb 530 mg/kg, and 
for Zn 720 mg/kg. High concentrations of these three chemical 
elements exceed their intervention values only in Zone 1 and in 
alluvial soils. Several samples with their high concentrations 
are collected from these two units with maximum concentrations 
in the range of 4.0 – 7.2 mg/kg Cd, 880 – 1,700 mg/kg Pb and 
1,500 – 3,100 mg/kg Zn.

The maximum concentration of Cd is 7.2 mg/kg, Pb 1,700 
mg/kg, and Zn 3,100 mg/kg. If we compare these values to their 
target values, they exceed 9 times the maximum for Cd, 20 times for 
Pb, and 22 times for Zn, respectively. Even the intervention values 
are exceeded by more than 3 times for Pb, and 4 times for Zn. 
 Almost the entire area is not contaminated with the aforementioned 

Figure 9. Spatial distribution of Cd–Pb–Zn pollution according to the NewDutch list (ESDAT, 2013) recommendation: A – Kriging; B – Multiple polynomial regres-
sion (MPR); C – Artificial neural network – Multilayer perceptron (ANN-MP).
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group, except for the two isolated units, alluvial soils and the in-
dustrial zone 1?

Fine-grained clay-sized particles are transported far from the 
source of contamination and have been detected by the three ap-
plied methods. The concentrations under the target values are 
detected at 73 km2 or 70 % of the entire study area with Kriging, 
70 km2 or 68 % with MPR and 77 km2 or 74.5 % with ANN-MP. 
The first model extracts about 28 km2 or 27 % between the target 
values and intervention values (yellow and orange colour), the 
second model about 31km2 or 30 %, and the third model about 
24 km2 or 23 %. The range that represents concentrations higher 
than the intervention values are isolated on about 2.5 km2 or 2.5 
% of the study area with Kriging and ANN-MP and 2 km2 or 2 
% with MPR (Table 2).

4.2.2. Natural enrichment
The spatial distribution of natural enrichment is presented in the 
summarized map of Co, Ni, and Cr (Fig. 10). These prediction 
models show an arrangement in natural enrichment across the 

study area. For a graphical display of the spatial distribution, the 
maps with target and intervention values are presented, where 
different colours represent changes within them. The used colour 
scale is the same as for the anthropogenic impact (Fig. 9). 

According to the NewDutch list (ESDAT, 2013), the target 
value for Ni is 35 mg/kg, Co 20 mg/kg, and Cr 100 mg/kg, but 
the intervention value for Ni is 210 mg/kg, Co 240 mg/kg, and Cr 
380 mg/kg. The maximum concentration of Ni is 500 mg/kg, Co 
64 mg/kg, and Cr 460 mg/kg. Comparing these values to the tar-
get values of the NewDutch list (ESDAT, 2013), natural enrich-
ment exceeded 14 times for Ni, 3 times for Co, and 46 times for 
Cr. Compared to the intervention values, they exceed the values 
by 2.5 times for Ni and for Cr are more than the same again? It 
seems that the major enrichment is from Ni and Cr.

All three models identify one major hotspot with its inter-
vention concentration, the Jurassic and Cretaceous flysch, but 
also some outcropping rocks on the Oligocene clastite complex. 
The first model isolates about 9 km2 or 9 % of the total study area 

Figure 10. The spatial distribution of natural enrichment Co–Cr–Ni according to the NewDutch list (ESDAT, 2013) recommendation: A – Kriging; B – Multiple poly-
nomial regression (MPR); C – Artificial neural network – Multilayer perceptron (ANN-MP).
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(103.7 km2), under the range of target values (two green colours), 
the second model identifies about 11.2 km2 or 11 %, and the last 
model about 8.6 km2 or 8 %. Almost all the study area is enriched 
with these elements (yellow and orange colours), where all three 
applied models isolated the majority of the territory: Kriging and 
ANN-MP about 85 km2 or 82 % and MPR 82 km2 or 79 % (Ta-
ble 2). Intervention values are observed at 10 km2 or 10 % of the 
entire study area with all applied models.

The spatial distribution of arsenic according to the NewDutch 
list (ESDAT, 2013) within all prediction methods is provided in 
Fig. 11. The target value for As is 29 mg/kg and the intervention 
value is 55 mg/kg. Comparing the values for As with the 
NewDutch list (ESDAT, 2013), its concentrations exceed the tar-
get values at 35 km2 with Kriging, 38 km2 with MPR and 41 km2 
with ANN-MP (Table 2). For area between 18-26 km2 its concen-
trations exceed the intervention value for As. Comparing the sur-
faces of all the selected elements (Pb, Zn, Cr, Ni) that includes 
major anthropogenic impact and natural enrichment, the natural 

enrichment with arsenic is the greatest. This enrichment has been 
absolutely unexpected and needs special attention in future in-
vestigations. 

Total contamination (As-Cd-Co-Cr-Ni-Pb-Zn) that includes 
anthropogenic impact and geogenic enrichment, respectively ex-
ceeds their target values over two-thirds of the entire study area, 
and one-third of their values exceed the intervention values. The 
total contamination is not a simple summary of these two types 
of contamination but it is necessary to mention that some spatial 
distributions are overlapping, and those final values seem lower 
than the summary of their particular distributions.

5. CONCLUSION
Along the Stavnja river valley, intensive mining and smelting ac-
tivities have been occurring for more than 100 years. Diverse 
mineral occurrences, especially iron deposits and lead-zinc de-
posits make this study area interesting for geochemical research. 
Also, this study area was a place of intensive military operation 

Figure 11. The spatial distribution of Arsenic according to the NewDutch list (ESDAT, 2013) recommendation: A – Kriging; B – Multiple polynomial regression (MPR); 
C – Artificial neural network – Multilayer perceptron (ANN-MP).
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during the last war, 1992–1995, which resulted in numerous re-
maining minefields, thus making this research more complex.

The spatial distributions of particular trace elements are aid-
ing the reconstruction of their main pathway in the study area and 
simultaneously isolating their hotspots. The problem of contami-
nation along the river represents an anisotropic appearance be-
tween the isotropic lithological units and cannot be solved com-
pletely by standard interpolation kriging methods, based only on 
sparse soil measurements. Two new powerful linear and nonlin-
ear modeling techniques are applied for solving this problem. 
Their arrangement in concentration across the Stavnja river val-
ley is more realistic and picturesque because they include more 
geospatial and geomorphological data such as geological back-
ground, land use, aspect, slope, altitude, etc. Including all the 
aforementioned facts, results in better interpretation and under-
standing of the processes that occurred during the particular pe-
riod of time that they are related to. Various modeling techniques 
help to reconstruct different processes that affected the entire 
area. Their main purpose is not only the isolation of hotspots with 
the highest concentrations. They simultaneously distinguish nat-
ural from anthropogenic influences as well as the transportation 
pattern (such as atmospheric or water transport).

Summarised maps that comprise solely three anthropogenic 
trace elements (Pb-Zn-Cd) and three natural trace elements (Ni-
Co-Cr) according to the NewDutch list (ESDAT, 2013) provide 
information about the overall anthropogenic impact and natural 
enrichment of study area. The results show:

1. All provided models indicate that natural enrichment is 
much higher than the anthropogenic impact. About 71 % or 73 km2 
is under target values, in the range between target and intervention 
values about 26.5 % or 26 km2, and over the intervention values 
by only about 2-2.5 % or 2-2.5 km2 of entire study area for Pb-Zn-
Cd. 

2. Natural enrichment (Ni-Co-Cr) shows the opposite situa-
tion, whereby only about 9 % or 10 km2 is under target values, 
about 84 km2 or 80 % between intervention and target values, and 
10 % or 10 km2 over intervention values of the study area.

3. The three applied models are repeatable, which means that 
very similar spatial distribution can be obtained under the same 

conditions, with an unrestricted number of applications. The very 
important characteristic of each particular model is that one 
model isolates all the hotspots simultaneously. On the other hand, 
their similarities are confirmation and validation of all the differ-
ent models at the same time. An important success in such mode-
ling is that all models are repeatable. 

4. Natural enrichment with arsenic is the highest result. This 
enrichment has been absolutely unexpected and needs special at-
tention in future investigations. 
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