The relationship between the geochemical and mineralogical characteristics of Calcocambisol, colluvium and recent marine lake sediment of the narrow seashore intertidal zone: a case study from the Veliko Jezero (Mljet Island, Croatia)
Main Article Content
Abstract
This study investigates the mineral composition, particle size distribution and geochemical characteristics of Calcocambisol, colluvium and recent marine lake sediment in a narrow intertidal seashore zone of the Veliko Jezero on the Island of Mljet (Croatia). The obtained results show that the fractions of Calcocambisol/colluvium less than 2 mm and 2 µm display similar particle size distribution (PSD) curves compared to marine lake sediments containing larger particles in these fractions. The smallest fractions of the investigated materials that are less than 1 µm show identical PSD curves. The bulk and clay mineral composition of the marine lake sediment show that the non-carbonate fraction is derived from weathering of the surrounding soils and colluvium containing quartz, feldspars and phyllosilicates (illitic material, kaolinites, chlorite, and a mixed-layer clay mineral, MLCM), as well as the authigenic formation of early-diagenetic pyrite, while one part is related to the yield of material by aeolian deposition (amphibole). The observed difference between the phyllosilicate mineral phases in the clay fraction of the Calcocambisol/colluvium and the carbonate-free clay fraction of the marine lake sediment is related to 1) the presence of chlorite in the marine lake sediment and 2) the higher content of MLCM in the Calcocambisol/colluvium. The chlorite in the marine lake sediment was inherited from the Calcocambisol/colluvium as a result of soil erosion prior to its complete destabilization in the soil. High Chemical Index of Alteration (CIA) values in the Calcocambisol and colluvium clearly indicate their intense weathering. Based on the Sm/Nd and Ti/Al ratios, it can be concluded that the aluminosilicates in the Calcocambisol, colluvium and marine lake sediment are of the same provenance. The distribution of each analysed element among the sequential fractions is very similar in both the Calcocambisol and colluvium. The highest concentrations for most of trace elements in the Calcocambisol, colluvium and marine lake sediment was determined in their residual fraction. Mn, Co and Pb show a different partitioning between the Calcocambisol/colluvium and marine lake sediment, respectively.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors have copyright and publishing rights on all published manuscripts.
References
BAKRAN-PETRICIOLI, T. & PETRICIOLI, D. (2008): Habitats in submerged karst of Eastern Adriatic Coast – Croatian Natural Heritage.– Croatian Medical Journal, 49, 455–458. doi: 10.3325/cmj2008.4.455
BECH, J., RUSTULLET, J., GARIGO, J., TOBIAS, F.J. & MARTINEZ, R. (1997): The iron content of some red Mediterranean soils from Northeast Spain and its pedogenic significance.– Catena, 28/3-4, 211–229. doi: 10.1016/S0341-8162(96)00039-2
BENEDETTI, M.F., MILNE, C.J., KINNIBURGH, D.G., VAN RIEMSDIJK, W.H. & KOOPAL, L.K. (1995): Metal ion binding to humic substances: application of the non-ideal competitive adsorption model.– Environmental Science & Technology, 29, 446–457. doi: 10.1021/es00002a022
BRADL, H.B. (2004): Adsorption of heavy metal ions on soils and soils constituents.– Journal of Colloid and Interface Science, 277/1, 1–18. doi: 10.1016/j.jcis.2004.04.005
BRINDLEY, G.W. & BROWN, G. (1980): Crystal structures of clay minerals and their X-ray identification.– Mineralogical Society, London, 495 p. doi: 10.1180/mono-5
BROWN, G. (1961): The X-ray identification and crystal structures of clay minerals.–Mineralogical Society, London, 544 p.
BRUNOVIĆ, D., MIKO, S., ILIJANIĆ, N., PEH, Z., HASAN, O., KOLAR, T., ŠPARICA MIKO, M. & RAZUM, I. (2019): Holocene foraminiferal and geochemical records in the coastal karst dolines of Cres Island, Croatia.– Geologica Croatica, 72/1, 19–42. doi: 10.4154/gc.2019.02
BURA-NAKIĆ, E., SONDI, I., MIKAC, N. & ANDERSEN, M.B. (2020): Investigating the molybdenum and uranium redox proxies in a modern shallow anoxic carbonate rich marine sediment setting of the Malo Jezero (Mljet Lakes, Adriatic Sea).– Chemical Geology, 533, 119441. doi: 10.1016/j.chemgeo.2019.119441
CORNU, S., DESCHATRETTES, V., SALVADOR-BLANES, S., CLOZEL, B., HARDY, M., BRANCHUT, S. & LE FORESTIER, L. (2005): Trace element accumulation in Mn—Fe—oxide nodules of a planosolic horizon.– Geoderma, 125/1–5, 11–24. doi: 10.1016/j.geoderma.2004.06.009
CUCULIĆ, V., CUKROV, N., KWOKAL, Ž., STRMEČKI, S. & PLAVŠIĆ, M. (2018): Assessing trace metal contamination and organic matter in the brackish lakes as the major source of potable water.– Environmental Geochemistry and Health, 40, 489–503. doi: 10.1007/s10653-017-9935-4
DURN, G., RUBINIĆ, V., WACHA, L., PATEKAR, M., FRECHEND, M., TSUKAMOTO, S., TADEJ, N. & HUSNJAK, S. (2018): Polygenetic soil formation on Late Glacial Loess on the Susak Island reflects paleo-environmental changes in the Northern Adriatic area.– Quaternary International, 494, 236–247. doi: 10.1016/j.quaint.2017.06.072
DURN, G., ŠKAPIN, S.D., VDOVIĆ, N., RENNERT, T., OTTNER, F., RUŽIČIĆ, S., CUKROV, N. & SONDI, I. (2019): Impact of iron oxides and soil organic matter on the surface physicochemical properties and aggregation of Terra Rossa and Calcocambisol subsoil horizons from Istria (Croatia).– Catena, 183, 104184. doi:10.1016/j.catena.2019.104184
GASPARATOS, D., TARENIDIS, D., HAIDOUTI, C. & OIKONOMOU, G. (2005): Microscopic structure of soil Fe-Mn nodules: environmental implications.– Environmental Chemistry Letters, 2, 175–178. doi: 10.1007/s10311-004-0092-5
GOVORČIN, D.P., JURAČIĆ, M., HORVATINČIĆ, N. & ONOFRI, V. (2001): Holocene sedimentation in the Soline channel (Mljet Lakes, Adriatic sea).– Natura Croatica, 10/4, 247–258.
GUŠIĆ, I., VELIĆ, I. & SOKAČ, B. (1995): Geology of the Mljet Island.– In: DURBEIĆ, P. & BENOVIĆ, A. (eds.): Proceedings of the symposium: Island of Mljet natural characteristics and social evaluation. Croatian Ecological Society, Zagreb, 35–53.
IP, C.C.M., LI, X.D., ZHANG, G., WAI, O.W.H. & LI, Y.S. (2007): Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China.– Environmental Pollution, 147/2, 311–323. doi: 10.1016/j.envpol.2006.06.028
ISO 10390 (2005): Soil quality–determination of pH.– International Organisation for Standardisation, Switzerland.
ISO 10693 (1995): Soil quality–determination of carbonate content–volumetric method.– International Organisation for Standardisation, Switzerland.
ISO 11265 (1994): Soil quality – Determination of the specific electrical conductivity.– International Organisation for Standardisation, Switzerland.
IVANIĆ, M., DURN, G., ŠKAPIN, S.D. & SONDI, I. (2020): Size-related mineralogical and surface physicochemical properties of the mineral particles from the recent sediments of the Eastern Adriatic Sea.– Chemosphere, 249, 126531. doi: 10.1016/j.chemosphere.2020.126531
JURINA, I., IVANIĆ, M., VDOVIĆ, N., TROSKOT-ČORBIĆ, T., LOJEN, S., MIKAC, N. & SONDI, I. (2015): Deposition of trace metals in sediments of the deltaic plain and adjacent coastal area (the Neretva River, Adriatic Sea).– Journal of Geochemical Exploration, 157, 120–131. doi: 10.1016/j.gexplo.2015.06.005
KAISER, K. & GUGGENBERGER, G. (2003): Mineral surfaces and soil organic matter.– European Journal of Soil Science, 54/2, 219–236. doi: 10.1046/j.1365-2389.2003.00544.x
KALANTZI, I., SHIMMIELD, T.M., PERGANTIS, S.A., PAPAGEORGIOU, N., BLACK, K.D. & KARAKASSIS, I. (2013): Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms.– Science of The Total Environment, 444, 128–137. doi: 10.1016/j.scitotenv.2012.11.082
KALNEJAIS, L.H., MARTIN, W.R. & BOTHNER, M.H. (2015): Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes.– Science of The Total Environment, 517, 178–194. doi: 10.1016/j.scitotenv.2015.02.011
KOROLIJA, B., BOROVIĆ, I., GRIMANI, I., MARINČIĆ, S., JAGAČIĆ, T., MAGAŠ, N. & MILANOVIĆ, M. (1977): Osnovna geološka karta SFRJ, Tumač za listove Lastovo K 33-46, Korčula K 33-47 i Palagruža K 33-57 [Basic Geological Map of SFRY 1:100000, Geology of the Lastovo, Korčula, Palagruža sheets – in Croatian].– Geološki Zavod Zagreb, Savezni Geološki Zavod, Beograd, 53p.
KOVAČIĆ, M., PAVELIĆ, D., VLAHOVIĆ, I., MARKOVIĆ, F., WACHA, L., KAMPIĆ, Š., RONČEVIĆ, S. & DREMPETIĆ, D. (2018): Pleistocene alluvial and aeolian deposits with tephra on the island of Lopud (eastern mid Adriatic, Croatia): provenance, wind regime, and climate controls.– Quaternary International, 494, 92–104. doi: 10.1016/j.quaint.2017.11.054
LATRILLE, C., ELSASS, F., VAN OORT, F. & DENAIX, L. (2001): Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France).– Geoderma, 100/1-2,127–146. doi: 10.1016/S0016-7061(00)00083-5
LIU, F., COLOMBO, C., ADAMO, P., HE, J.Z. & VIOLANTE, A. (2002): Trace elements in manganese–iron nodules from a Chinese Alfisol.– Soil Science Society of America Journal, 66, 661–670. doi: 10.2136/sssaj2002.6610
MARTINOVIĆ, J. (1982): Pedološka karta SFRJ mjerilo 1:50 000, list Mljet 1 [Pedological Map of SFRY 1:50000, Mljet sheet – in Croatian].– Projekt i savjet za izradu pedološke karte SR Hrvatske, Zagreb.
MEHRA, O.P. & JACKSON, M.L. (1960): Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate.– Clays Clay Minerals, 7, 317–327. doi: 10.1016/B978-0-08-009235-5.50026-7
MOORE, D.M. & REYNOLDS, R.C. (1989): X-ray diffraction and the identification and analysis of clay minerals.– Oxford University Press, Inc.,New York, 332 p.
MORELLI, G., GASPARON, M., FIERRO, D., HU,W.P. & ZAWADZKI, A. (2012): Historical trends in trace metal and sediment accumulation in intertidal sediments of Moreton Bay, southeast Queensland, Australia.– Chemical Geology, 300–301, 152–164. doi: 10.1016/j.chemgeo.2012.01.023
MUNSELL SOIL COLOR CHARTS (1994): Macbeth Division of Kollmorgen Instruments.– New Windsor, New York, USA.
NEAMAN, A., MARTINEZ, C.E., TROLARD, F. & BOURRIE, G. (2008): Trace elements associations with Fe-Mn oxides in soil nodules: comparison of selective dissolution with electron probe microanalysis.– Applied Geochemistry, 23, 778–782. doi: 10.1016/j.apgeochem.2007.12.025
NEMATI, K., ABU BAKAR, N.K., RADZI ABAS, M. & SOBHANZADEH, E. (2011): Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia.– Journal of Hazardous Materials, 192/1, 402–410. doi: 10.1016/j.jhazmat.2011.05.039
PALUMBO, B., BELLANCA, A., NERI, R. & ROE, M.J. (2001): Trace metal partitioning in Fe–Mn nodules from Sicilian soils, Italy.– Chemical Geology, 173/4, 257–269. doi: 10.1016/S0009-2541(00)00284-9
PAVELIĆ, D., KOVAČIĆ, M., VLAHOVIĆ, I., MANDIĆ,O., MARKOVIĆ, F. & WACHA, L. (2014): Topography controlling the wind regime on the karstic coast: late Pleistocene coastal calcareous sands of eastern mid-Adriatic, Croatia.– Facies 60/4, 843–863. doi: 10.1007/s10347-014-0411-7
PEREZ-HUERTA, A. & SHELDON, N.D. (2006): Pennsylvanian sea level cycles, nutrient availability, and brachiopod community structure.– Paleogeography, Palaeoclimatology, Palaeoecology, 230/3, 264–279. doi: 10.1016/j.palaeo.2005.07.020
RAZUM, I., MIKO, S., ILIJANIĆ, N., HASAN, O., ŠPARICA MIKO, M., BRUNOVIĆ, D. & V. PAWLOWSKY-GLAHN, V. (2020): A compositional approach to the reconstruction of geochemical processes involved in the evolution of Holocene marine flooded coastal karst basins (Mljet Island, Croatia).– Applied Geochemistry, 116, 104574. doi: 10.1016/j.apgeochem.2020.104574
ROGAN ŠMUC, N., DOLENEC, T., KRAMAR, S. & MLADENOVIĆ, A. (2018): Heavy Metal Signature and Environmental Assessment of Nearshore Sediments: Port of Koper (Northern Adriatic Sea).– Geosciences, 8/11, 398. doi: 10.3390/geosciences8110398
RUBINIĆ, V., LAZAREVIĆ, B., HUSNJAK, S. & DURN, G. (2015): Climate and relief influence on particle size distribution and chemical properties of Pseudogley soils in Croatia. – Catena, 127, 340–348. doi: 10.1016/j.catena.2014.12.024
SCHWERTMANN, U. (1964): Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-lösung.– Z. Pflanzenernähr. Bodenkund., 105, 194–202. doi: 10.1002/jpln.3591050303
SHELDON, N.D. (2006): Abrupt chemical weathering increase across the Permian-Triassic boundary.– Paleogeography, Palaeoclimatology, Palaeoecology, 231/3–4, 315–321. doi: 10.1016/j.palaeo.2005.09.001
SHELDON, N.D. & TABOR, N.J. (2009): Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols.– Earth-Science Reviews, 95/1–2, 1–52. doi: 10.1016/j.earscirev.2009.03.004
SOIL SCIENCE DIVISION STAFF (2017): Soil survey manual.– In:DITZLER, C., SCHEFFE, K. & MONGER, H.C. (eds.): USDA Handbook 18 Government Printing Office, Washington, D.C.
SONDI, I., JURAČIĆ, M., PROHIĆ, E. & PRAVDIĆ, V. (1994): Particulates and the environmental capacity for trace metals: A small river as a model for a land-sea transfer system: the Raša River estuary.– Science of the Total Environment, 155/2, 173–185. doi: 10.1016/0048-9697(94)90290-9
SONDI, I. & JURAČIĆ, M. (2010): Whiting events and the formation of aragonite in Mediterranean Karstic Marine Lakes: new evidence on its biologically induced inorganic origin.– Sedimentology, 57/1, 85–95. doi: 10.1111/j.1365-3091.2009.01090.x
SONDI, I., MIKAC, N., VDOVIĆ, N., IVANIĆ, M., FURDEK, M. & ŠKAPIN, S.D. (2017): Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.– Chemosphere, 168, 786–797. doi: 10.1016/j.chemosphere.2016.10.134
SURIĆ, M., JURAČIĆ, M., HORVATINČIĆ, N. & KRAJCAR BRONIĆ, I. (2005): Late Pleistocene-Holocene sea-level changes and pattern of karstic coasts submersionrecords from submerged speleothems along the Eastern Adriatic Coast (Croatia).– Marine Geology, 214/1–3, 163–175. doi: 10.1016/j.margeo.2004.10.030
TOMADIN, L. (2000): Sedimentary fluxes and different dispersion mechanisms of the clay sediments in the Adriatic Basin.– Rendiconti Lincei. Scienze Fisiche e Naturali, 11/3, 161–174. doi: 10.1007/BF02904649
URE, A.M., QUEVAUVILLER, PH., MUNTAU, H. & GRIEPINK, B. (1993): Speciation of heavy metal in soils and sediments. An account of the improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities.– International Journal of Environmental Analytical Chemistry, 51/1–4, 135–151. doi: 10.1080/03067319308027619
VODYANITSKII, Y.N., VASILEV, A.A., VLASOV, M.N. & KOROVUSHKIN, A.V. (2009): The role of iron compounds in fixing heavy metals and arsenic in alluvial and soddy-podzolic soils in the Perm area Eurasian.– Soil Science, 42, 738–749. doi: 10.1134/S1064229309070047