The preliminary inventory of coseismic ground failures related to December 2020 – January 2021 Petrinja earthquake series

Main Article Content

Davor Pollak
Vlatko Gulam
Tomislav Novosel
Radovan Avanić
Bruno Tomljenović
Nina Hećej
Josip Terzić
Josip Stipčević
Mario Bačić
Tomislav Kurečić
Mario Dolić
Iris Bostjančić
Lara Wacha
Ivan Kosović
Marko Budić
Matija Vukovski
Nikola Belić
Marko Špelić
Vlatko Brčić
Josip Barbača
Branko Kordić
Damir Palenik
Radovan Filjak
Tihomir Frangen
Mirja Pavić
Kosta Urumović
Marin Sečanj
Bojan Matoš
Marin Govorčin
Meho Saša Kovačević
Lovorka Librić

Abstract

TThe most recent major earthquake series struck near Petrinja (December 29th 2020 M 6.2), and triggered extensive ground failures in the wider area of Petrinja, Sisak and Glina. Coseismic ground failures including subsidence dolines, liquefaction and landslides have been documented over a large area by various experts and teams. These data are stored in the newly created inventory, which is openly presented in this paper. This inventory is administered and updated by the Croatian Geological Survey, and will be available online via a Web Map Service (WMS) (www.hgi-cgs.hr). The aim of the inventory is to not only provide data for the development of susceptibility maps and more detailed exploration for possible remediation measures, but also to define the priorities for immediate action. The earthquake triggered the rapid development of dropout dolines which endanger the local populations of the villages of Mečenčani and Borojevići. This is still an ongoing process in the vicinity of the houses and therefore in-situ exploration started immediately. Liquefaction related to alluvial sediments of the Sava, Kupa and Glina rivers occurred almost exclusively in loose and pure sands, and was accompanied by sand boils, subsidence and lateral spreading. Liquefaction also presents a greater hazard because settlement of houses and river embankments occurred. Lateral spreading caused failures of river flood
embankments and natural river banks. According to the data known to date, the majority of the coseismic landslides were reactivated with minor displacements. Despite that, it has been recognised that houses at the edge, or in landslide colluvium suffered greater damage than other houses located outside the landslide impact zone.

Downloads

Download data is not yet available.

Article Details

Section
Scientific note

References

AVANIĆ, R., KOVAČIĆ, M., PAVELIĆ, D. & PEH, Z. (2018a): The Neogene of Hrvatsko Zagorje.– In: TIBLJAŠ, D., HORVAT, M., TOMAŠIĆ, N., MILEUSNIĆ, M. & GRIZELJ, A. (eds.): 9th Mid-European Clay Conference, Conference book, Field Trip Guide book, Zagreb, 128–131.

AVANIĆ, R., ŠIMUNIĆ, A. & PEH, Z. (2018b): Geology of the Croatian Zagorje Region.– In: RMAN, N., MARKOVIĆ, T. & BRENČIĆ, M. (eds.): 5. Slovenski geološki kongres, Post congress field trip book, Ljubljana, p. 35.

BAČIĆ, M., IVŠIĆ, T. & KOVAČEVIĆ, M.S. (2020): Geotechnics as an unavoidable segment of earthquake engineering.– Građevinar, 72/10, 923–936, doi: 10.14256/JCE.2968.2020

BADA, G., HORVÁTH, F., DÖVÉNYI, P., SZAFIAN, P., WINDHOFFER, G. & CLOETINGH, S. (2007): Present-day stress field and tectonic inversion in the Pannonian basin.– Global and Planetary Change, 58, 165–180. doi: 10.1016/j.gloplacha.2007.01.007

BASILI, R., KASTELIC, V., DEMIRCIOGLU, M.B., GARCIA MORENO, D., NEMSER, E.S., PETRICCA, P., SBORAS, S.P., BESANA-OSTMAN, G.M., CABRAL, J., CAMELBEECK, T., CAPUTO, R., DANCIU, L., DOMAC, H., FONSECA, J., GARCÍA-MAYORDOMO, J., GIARDINI, D., GLAVATOVIC, B., GULEN, L., INCE, Y., PAVLIDES, S., SESETYAN, K., TARABUSI, G., TIBERTI, M.M., UTKUCU, M., VALENSISE, G., VANNESTE, K., VILANOVA, S. & WÖSSNER, J. (2013): The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/SHARE_WP3.2_Database.html, doi: 10.6092/INGV.IT-SHARE-EDSF

BATES, R.L. & JACKSON, J.A. (1980): Glossary of Geology American Geological Institute (AGI).– Falls Church, 751 p.

BELL, F.G. (2007): Engineering Geology, Second Edition.– Elsevier Ltd., 575 p.

BIRD, J.F. & BOMMER, J.J. (2004): Earthquake losses due to ground failure.– Engineering Geology, 75/1, 147–179. doi: 10.1016/j.enggeo.2004.05.006

BOMMER, J.J. & RODRÍGUEZ, C.E. (2002): Earthquake-induced landslides in Central America, Eng. Geol., 63, 189–220. doi: 10.1016/S0013-7952(01)00081-3

BOSTJANČIĆ, I. & POLLAK, D. (2020): Rockfall threat assessment along railways in carbonate rocks in Croatia.– Bulletin of Engineering Geology and the Environment, 79, 3921–3942.
doi: 10.1007/s10064-020-01822-x

CAPRARI, P., DELLA SETA, M., MARTINO, S., FANTINI, A., FIORUCCI, M. & PRIORE, T. (2018): Upgrade of the CEDIT database of earthquake-induced ground effects in Italy.– Italian Journal of Engineering Geology and Environment, 2, 23–39. doi: 10.4408/IJEGE.2018-02.O-02

DORREN, L.K.A. (2003): A review of rockfall mechanics and modelling approaches.– Progress in Physical Geography: Earth and Environment, 27/1, 69–87. doi: 10.1191/0309133303pp359ra

ERAK, M. (2018): Karta podložnosti na klizanje Republike Hrvatske [Landslide susceptibility map of the Republic of Croatia – in Croatian].– Unpubl. Master’s thesis. Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, 35 p.

GONZÁLEZ DE VALLEJO, L.I. & FERRER, M. (2011): Geological engineering.– CRC Press/Balkema, 678 p. doi: 10.1201/b11745

GORUM, T., FAN, X., VAN WESTEN, C.J., HUANG, R.Q., XU, Q., TANG, C. & WANG, G. (2011): Distribution pattern of earthquake - induced landslides triggered by the 12 May 2008 Wenchuan earthquake.– Geomorphology, 133(3–4), 152–167. doi: 10.1016/j.geomorph.2010.12.030

GOVORČIN, M., HERAK, M., MATOŠ, B., PRIBIČEVIĆ, B. & VLAHOVIĆ, I. (2020): Constraints on Complex Faulting during the 1996 Ston–Slano (Croatia) Earthquake Inferred from the DInSAR, Seismological, and Geological Observations.– Remote Sensing, 12, 1157. doi: 10.3390/rs12071157

GRIZELJ, A. (2004): Mineraloške i geokemijske značajke gornjomiocenskih pelitnih sedimenata jugozapadnog dijela Hrvatskog zagorja [Mineralogical and geochemical characteristics of Upper Miocene pelitic sediments of the south-western part of Hrvatsko zagorje – in Croatian].– Unpubl. Master’s thesis, Faculty of Science, University of Zagreb, Zagreb, 118 p.

HALAMIĆ, J., BELAK, M., PAVELIĆ, D., AVANIĆ, R., FILJAK, R., ŠPARICA, M., BRKIĆ, M., KOVAČIĆ, M., VRSALJKO, D., BANAK, A. & CRNKO, J. (2019): Osnovna geološka karta Republike Hrvatske mjerila 1 : 50 000 – Požeška gora [Basic Geological Map of the Republic of Croatia 1:50000 – Požeška gora – in Croatian].– Croatian Geological Survey, Department of Geology, Zagreb.

HERAK, D., HERAK, M. & TOMLJENOVIĆ, B. (2009): Seismicity and earthquake focal mechanisms in NorthWestern Croatia.– Tectonophysics, 465, 212–220. doi: 10.1016/j.tecto.2008.12.005

HERAK, D., HERAK, M., PRELOGOVIĆ, E., MARKUŠIĆ, S. & MARKULIN, Ž. (2005): Jabuka island (Central Adriatic Sea) earthquakes of 2003.– Tectonophysics, 398, 167–180. doi: 10.1016/j.tecto.2005.01.007

HERAK, D., HERAK, M. & VRKIĆ, I. (2017a): Velika trešnja, seizmičnost i potresna opasnost na širem dubrovačkom području [Great earthquake, seismicity and seismic hazard in the wider Dubrovnik area – in Croatian].– Dubrovnik: časopis za književnost i znanost XXVIII, 1, 5–18.

HERAK, D., SOVIĆ, I., CECIĆ, I., ŽIVČIĆ, M., DASOVIĆ, I. & HERAK, M. (2017b): Historical seismicity of the Rijeka region (NW External Dinarides, Croatia) – Part I: Earthquakes of 1750, 1838 and 1904 in the Bakar epicentral area.– Seismological Research Letters, 88, 904–915.

HERAK, D., ŽIVČIĆ, M., VRKIĆ, I. & HERAK, M. (2020): The Međimurje (Croatia) Earthquake of 1738.– Seismological Research Letters, 91, 1042–1056. doi: 10.1785/0220190304

HERAK, M., ALLEGRETTI, I., HERAK, D., IVANČIĆ, I., KUK, V., MARIĆ , K., MARKUŠIĆ , S. & SOVIĆ , I. (2011): Republika Hrvatska, Karta potresnih područja [Republic of Croatia, Seismic Hazard Maps – in Croatian].– University of Zagreb, Faculty of Science, Department of Geophysics.
http://seizkarta.gfz.hr/karta.php. Accessed 25 January 2021. In: Eurocode 8: design of structures for earthquake resistance–part 1: general rules, seismic actions and rules for buildings. National Annex.– Croatian Standards Institute, p. 28.

ISHIHARA, K. (1985): Stability of natural deposits during earthquakes.– In: Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 12–16 August, 321–377.

KAJIHARA, K., POKHREL, R.M., KIYOTA, T. & KONAGAI, K. (2016): Liquefaction- induced ground subsidence extracted from Digital Surface Models and its application to hazard map of Urayasu city, Japan.– In: The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Japanese Geotechnical
Society Special Publication, 829–834. doi: 10.3208/jgssp.TC203-02

KEEFER, D.K. (1984): Landslides caused by earthquakes.– Bulletin of the Geological Society of America 95, 406–421.

KOVAČIĆ, M. (2004): Sedimentologija gornjomiocenskih naslaga jugozapadnog dijela Panonskog bazena. [Sedimentology of the Upper Miocene deposits from the southwest part of the Pannonian Basin – in Croatian].– Unpubl. PhD Thesis, Faculty of Science, University of Zagreb, 203 p.

KRANJC, A. (2013): Classification of closed depressions in carbonate karst.– In: SHRODER, J. (Editor in Chief), FRUMKIN, A. (ed.): Treatise on Geomorphology. Academic Press, San Diego, CA, Vol. 6, Karst Geomorphology, 104–111. doi: 10.1016/B978-0-12-374739-6.00125-1

KRSNIK, M. (2005): Geofizička istraživanja područja Pašinog vrela [Geophysical research of the Pašino vrelo spring area – in Croatian].– Unpubl. Technical report, Archive IGH d.d., U 0255/05

KUREČIĆ, T. (2017): Sedimentologija i paleoekologija Pliocenskih Viviparus slojeva Vukomeričkih Gorica [Sedimentology and paleoecology of Pliocene Viviparus beds from the area of Vukomeričke Gorice – in Croatian, with an English Abstract].– Unpubl. PhD Thesis, Faculty of Science, University of Zagreb, 168 p.

KUREČIĆ, T., KOVAČIĆ, M. & GRIZELJ, A. (submitted): Mineral assemblage and provenance of the pliocene Viviparus Beds from the area of Vukomeričke gorice (Central Croatia).– Geologia Croatica.

KVASNIČKA, P. & MATEŠIĆ, L. (2001): Geotechnical data base for the City of Zagreb and its application in site response analyses.– In: Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, 11–15.

KVASNIČKA, P., MATEŠIĆ, L. & SKRAČIĆ, S. (1998): Geotehnička podloga grada Zagreba. [Geotechnical basis of the city of Zagreb – in Croatian].– Građevinar, 50/1, 119–127.

LARVA, O., MARKOVIĆ, T. & MRAZ, V. (2010): Hydrodynamic and hydrochemical conditions at the groundwater source “Pašino vrelo”, with focus on its development.– Geologia Croatica, 63/3, 299–312. doi:104154/gc.2010.24

MAJER, V. & LUGOVIĆ, B. (1985): Metamorfne stijene u ofiolitnoj zoni Banije, Jugoslavija. II. Amfiboliti (metabaziti) [Metamorphic rocks in the Banija ophiolite zone, Yugoslavia: II.Amphibolites (metabasites) – in Croatian].– Acta Geologica JAZU, 15/2, 25–49, Zagreb.

MAJER, V. (1984): Metamorfne stijene u ofiolitskoj zoni Banije, Jugoslavija. I. Metapeliti [Metamorphic rocks in the Banija ophiolite zone of Banija, Yugoslavia. I. Metapelites – in Croatian].–Rad JAZU, 41/1, 35–82, Zagreb.

MANDIC, O., KUREČIĆ, T., NEUBAUER, T.A. & HARZHAUSER, M. (2015): Stratigraphic and paleogeographic significance of lacustrine mollusks from the Pliocene Viviparus beds in central Croatia.– Geologia Croatica, 68/3, 179–207. doi: 10.4154/GC.2015.15

MARKUŠIĆ, S., STANKO, D., KORBAR, T., BELIĆ, N., PENAVA, D. & KORDIĆ, B. (2020): The Zagreb (Croatia) M5.5 Earthquake on 22 March 2020.– Geosciences, 10, 252. doi: 10.3390/geosciences10070252

MARTINO, S., PRESTININZI, A. & ROMEO, R.W. (2014): Earthquake-induced ground failures in Italy from a reviewed database.– Natural Hazards and Earth System Sciences, 14, 799–814. doi: 10.5194/nhess-14-799-2014

MATEŠIĆ, L. & KVASNIČKA, P. (2007): Geotechnical data management according to ISO 9001.– In: CUELLAR et al. (eds): Proceedings of the 14th European conference on soil mechanics and geotechnical engineering, Madrid. Mill press science publishers, 1715–1719.

MATEŠIĆ, L., KVASNIČKA, P. & MIHALIĆ, S. (2011): Importance of data and process management in Eurocode 7.– Geofizika, 28/1, 99–107.

MRAZ, V. (2005): Vodoistražni radovi „Pašino vrelo“. [Hydrogeological investigations of the Pašino vrelo spring – in Croatian].– Unpubl. Technical report, Archive of the Croatian Geological Survey, 88/05.

MRAZ, V., LARVA, O. & MARKOVIĆ, T. (2007): Izvorište „Pašino vrelo“. Zaštitne zone za novi zdenac SPB PV – 01/06 i vodocrpilište „Pašino vrelo“. [Pašino vrelo spring – sanitary protection zones for the new extraction well SPB PV – 01/06 and the spring itself – In Croatian].– Unpubl. Technical report, Archive of the Croatian Geological Survey, 64/07.

NORRIS, G., GAHIR, Z. & SIDDHARTHAN, R. (1998): An effective stress understanding of liquefaction behaviour.– Environmental and Engineering Geoscience, 4, 93–101.

PAMIĆ, J. (2002): The Sava–Vardar Zone of the Dinarides and Hellenides versus the Vardar Ocean.– Eclogae Geologicae Helvetiae, 95, 99–113.

PAVELIĆ, D. & KOVAČIĆ, M. (2018): Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review.– Mar. Petrol. Geol., 91, 455–469. doi: 10.1016/j.marpetgeo.2018.01.026

PIKIJA, M. (1986): Osnovna geološka karta SFRJ 1:100.000. Tumač za list Sisak. [Basic Geological Map of SFRY 1:100.000, Geology of the Sisak sheet – in Croatian].– Institut za geološka istraživanja, Zagreb, Savezni geol. zavod, Beograd, 55 p.

PIKIJA, M. (1987): Osnovna geološka karta SFRJ 1:100.000 list Sisak [Basic Geological Map of SFRY 1:100.000, Sisak sheet – in Croatian].– Geol. Zavod, Zagreb, Savezni geol. Zavod, Beograd.

PODOLSZKI, L., POLLAK, D., GULAM, V. & MIKLIN, Ž. (2014): Development of Landslide Susceptibility Map of Croatia.– In: LOLLINO G. et al. (eds.): Engineering Geology for Society and Territory – Volume 2, 947–950. doi: 10.1007/978-3-319-09057-3_164

PRESTININZI, A. & ROMEO, R. (2000): Earthquake-induced ground failures in Italy.– Engineering Geology, 58/3–4, 387–397. doi: 10.1016/S0013-7952(00)00044-2

RAFFAELLI, P. & MAGDALENIĆ Z. (1970): Metamorphic and magmatic rocks in the Gvozdansko-Brezovo Polje area. Banija.– Bull. Sci. Cons. Acad. Yougosl., (A), Zagreb, 15/9-10, 313–314.

RODRÍGUEZ, C.E., BOMMER, J.J. & CHANDLER, R.J. (1999): Earthquake-induced landslides: 1980–1997.– Soil Dynamics and Earthquake Engineering, 18, 325–346.
doi: 10.1016/S0267-7261(99)00012-3

SAFTIĆ, B., VELIĆ, J., SZTANÓ, O., JUHÁSZ, G. & IVKOVIĆ, Ž. (2003): Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary).– Geologia Croatica, 56/1, 101–122.

ŠAVOR NOVAK, M., UROŠ, M., ATALIĆ J., HERAK, M., DEMŠIĆ, M., BANIČEK, M., LAZAREVIĆ, D., BIJELIĆ, N., CRNOGORAC, M. & TODORIĆ, M. (2020): Zagreb earthquake of 22 March 2020 – preliminary report on seismologic aspects and damage to buildings.– Građevinar, 72, 10, 843–867.

SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MAŢENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K., VAN HINSBERGEN, D.J. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and Western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/j.gr.2019.07.005

SCHMITT, R.G., TANYAS, HAKAN, NOWICKI, JESSEE, M.A., ZHU, JING, BIEGEL, K.M., ALLSTADT, K.E., JIBSON, R.W., THOMPSON, E.M., VAN WESTEN, C.J., SATO, H.P., WALD, D.J., GODT, J.W., GORUM, TOLGA., XU, CHONG, RATHJE, E.M. & KNUDSEN, K.L. (2017): An open repository of earthquake- triggered ground-failure inventories.– U.S. Geological Survey data release collection, data series 1064, accessed June 26. doi: 10.5066/F7H70DB4

ŠIKIĆ, K. (2014a): Osnovna geološka karta RH 1:100.000, list Bosanski Novi [Basic Geological Map of Republic Croatia 1:100.000, Bosanski Novi sheet – In Croatian].– Croatian Geological Survey, Zagreb.

ŠIKIĆ, K. (2014b): Osnovna geološka karta RH 1:100.000, Tumač za list Bosanski Novi [Basic Geological Map of Republic Croatia 1:100.000, Geology of the Bosanski Novi sheet – In Croatian].– Croatian Geological Survey, Zagreb, 111 p.

ŠIMUNOVIĆ, A. & HEĆIMOVIĆ, I. (1998): Geološka i hidrogeološka istraživanja bliže okolice Pašinog vrela [Geological and hydrogeological study in the vicinity of “Pašino vrelo”– in Croatian].– Unpubl. Technical report, Archive of the Croatian Geological Survey, 88/98.

TOMLJENOVIĆ, B. & CSONTOS, L. (2001): Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac basins, Croatia).–International Journal of Earth Sciences, 90, 560–578. doi: 10.1007/s005310000176

TORBAR, J. (1882): Izvješće o Zagrebačkom potresu [The report on Zagreb earthquake – In Croatian]. – JAZU, Zagreb, 141 p.

TOŠEVSKI, A. (2018): Podložnost porječja rijeke Dubračine površinskim geodinamičkim procesima [Susceptibility of the Dubracina river basin to the superficial geodynamical processes – in Croatian].– Unpubl. PhD Theses, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 251 p.

U.S. Geological Survey (2021): Earthquake Glossary at URL: https://earthquake.usgs. gov/learn/glossary/

USTASZEWSKI, K., HERAK, M., TOMLJENOVIĆ, B., HERAK, D. & MATEJ, S. (2014): Neotectonics of the Dinarides-Pannonian Basin transition and possible earthquake sources in the Banja Luka epicentral area.– Journal of Geodynamics, 82, 52–68. doi: 10.1016/j.jog.2014.04.006

USTASZEWSKI, K., KOUNOV, A., SCHMID, S.M., SCHALTEGGER, U., KRENN, E., FRANK, W. & FÜGENSCHUH, B. (2010): Evolution of the Adria‐Europe plate boundary in the northern Dinarides: From continent‐continent collision to back‐arc extension.– Tectonics, 29, TC 6017, 1–34. doi: 10.1029/2010TC002668

USTASZEWSKI, K., SCHMID, S.M., LUGOVIĆ, B., SCHUSTER, R., SCHALTEGGER, U., BERNOULLI, D., HOTTINGER, L., KOUNOV, A., FÜGENSCHUH, B. & SCHEFER, S. (2009): Late Cretaceous intra oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates.– Lithos, 108, 106-125. doi: 10.1016/j.lithos.2008.09.010

VARNES, D.J. (1978): Slope movement types and processes.– In: SCHUSTER, R.L. & KRIZEK, R.J. (eds): Landslides: analysis and control, Vol. 176. National Academy of Sciences, TRB special report, 11–33.

VEINOVIĆ, Ž. (2007): Ocjena mogućnosti pojave likvefakcije i definiranje osnove za likvefakcijsko zoniranje na teritoriju Republike Hrvatske. [Assessment of the possibility of liquefaction occurrence and defining the basis for liquefaction zoning on the territory of the Republic of Croatia – in Croatian].– Unpubl. PhD Theses, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 330 p.

VEINOVIĆ, Ž., DOMITROVIĆ, D. & LOVRIĆ, T. (2007): Pojava likvefakcije na području Zagreba u prošlosti i procjena mogućnosti ponovne pojave tijekom jačeg potresa [Historical occurrence of liquefaction in Zagreb area and estimation of reoccurrence in case of another strong earthquake – in Croatian].– Rudarskogeološko-naftni zbornik, 19, 111–120.

WALTHAM, A.C. & FOOKES, P.G. (2003): Engineering classification of karst ground conditions.– Quarterly Journal of Engineering Geology and Hydrogeology, 36, 101–118. doi: 10.1144/1470-9236/2002-33

WILLIAMS, P. (2004): Dolines.– In: GUNN, J. (ed.): Encyclopedia of Caves and Karst Science.– Fitzroy Dearborn, New York, NY, and London, 304–310.

YOUD, T.L. & HOOSE, S.N. (1978): Historic ground failures in northern California associated with earthquakes.– USGS Professional Paper, 993, 177 p.

YOUD, T.L. & PERKINS, J.B. (1987): Map I-127-G.– US Geological Survey, Washington, DC.