Spatio-temporal variations of cave-air CO2 concentrations in two Croatian show caves: Natural vs. anthropogenic controls

Main Article Content

Maša Surić
Robert Lončarić
Matea Kulišić
Lukrecija Sršen

Abstract

Carbon dioxide (CO2) concentration (CDC) plays an important role in karst processes, governing both carbonate deposition and dissolution, affecting not only natural processes, but also human activities in caves adapted for tourism. Its variations due to various controlling parameters was observed from 2017 to 2021 in two Croatian show caves (Manita peć and Modrič) where we examined inter- and within-cave correlation of internal aerology regarding the sources, sinks and transport mechanism of CDC in a karst conduit setting. In both caves, the main sources of CO2 are: i) plant and microbial activity i.e. root respiration and organic matter decay within soil horizons and fractured epikarst, and ii) degassing from CO2-rich percolation water. The main sink of CO2 is dilution with outside air due to cave ventilation. Chimney-effect driven ventilation controlled by seasonal differences between surface and cave air temperatures shows winter (Tout<Tcave) and summer (Tout>Tcave ) ventilation regime, which are modulated by the geometry of cave passages, the transmissivity of the overlying epikarst, and occasionally by the external winds, especially the gusty north-eastern bora wind. In these terms, the Modrič Cave appears to be more confined and less ventilated, with a substantial CDC difference between the left (550-7200 ppm) and right (1475- >10,000 ppm) passages. The Manita peć Cave is, in contrast, ventilated almost year-round, having 7 months of CDC equilibrated with the outside atmosphere and the highest summer CDC values of ~1410 ppm. In both caves, at the current level of tourist use, anthropogenic CO2 flux is not a matter of concern for cave conservation. In turn, in the innermost part of the right Modrič Cave passage  visitors’ health might be compromised, but the tourists are allowed only in the left passage. 


Speleothem growth rate, recognized as a useful palaeoenvironmental proxy for speleothem-based palaeoclimate studies, strongly depends on CDC variations, so the high CDCs recorded in the Modrič Cave indicate the potential periods with no speleothem deposition due to the hampered degassing of CO2 from the dripping groundwater. The opposite effect i.e. enhanced ventilation (that supports calcite precipitation) during the windy glacials/stadials, as well as substantial vegetational changes must also be taken into consideration when interpreting environmental records from spelean calcite.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ACTION PLAN NATIONAL PARK PAKLENICA (2007), Starigrad-Paklenica.

AGUILAR, J., BRAJKOVIĆ, D., CROCHET, J., MAUCH LENARDIĆ, J., MICHAUX, J., MIHEVC, A. & SIGE, B. (2004): Fossil-bearing fissure fillings of Slovenia and Croatia.– Proceedings of the 12th International Karstological School, Classical Karst: dating of cave sediments. Karst research institute ZRC SAZU, Postojna, Slovenia.

AZUMA, K., KAGI, N., YANAGI, U. & OSAWA, H. (2018): Effects of low–level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance.– Environ. Int., 121, 51–56. doi: 10.1016/j.envint.2018.08.059

BAKER, A., SMART, P.L. & EDWARDS, L.R. (1995): Palaeoclimate implications of mass spectrometric dating of a British Flowstone.– Geology, 23/4, 309–312. doi:10.1130/0091-7613(1995)023<0309:PIOMSD>2.3.CO;2

BAKER, A., BARNES, W. & SMART, P. (1997): Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol.– Hydrol. Process., 11, 1541–1555. doi:10.1002/(SICI)1099-1085(199709)11:11<1541::AIDHYP484>3.0.CO;2-Z

BALDINI, J.U.L., BALDINI, L.M., MCDERMOTT, F. & CLIPSON, N. (2006): Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland.– J. Cave Karst Stud., 68, 4–11.

BALDINI, J.U.L., MCDERMOTT, F., HOFFMANN, D.L., RICHARDS, D.A. & CLIPSON, N. (2008): Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope–based paleoclimate records.– Earth Planet. Sci. Lett., 272, 118–129. doi: 10.1016/j.epsl.2008.04.031

BATIOT-GUILHE, C., SEIDEL, J., JOURDE, H., HÉBRARD, O. & BAILLY-COMTE, V. (2007): Seasonal variations of CO2 and 222Rn in Mediterranean sinkhole–spring (Causse d’ Aumelas, SE France).– Int. J. Speleol., 36, 51–56. doi: 10.5038/1827-806X.36.1.5

BENSON, A., HOFFMANN, D.L., DAURA, J., SANZ, M., RODRIGUES, F., SOUTO, P., & ZILHÃO, J. (2021): A speleothem record from Portugal reveals phases of increased winter precipitation in western Iberia during the Holocene.– The Holocene, 31/8, 1339–1350. doi: 10.1177/09596836211011666

BOČIĆ, N. & BUZJAK, N. (2018): Neki novi rezultati mjerenja koncentracije CO2 u odabranim špiljama u Hrvatskoj [Some new results of measuring CO2 concentration in selected caves in Croatia – in Croatian].– Zbornik sažetaka skupa speleologa Hrvatske 2018. Ur: Paar, D., Felić, M. Zagrebački speleološki savez.

BOURGES, F., GENTHON, P., MANGIN, A. & D’HULST, D. (2006): Microclimates of L’Aven D’Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas).– Int. J. Climatol., 26, 1651–1670. doi: 10.1002/joc.1327

BOURGES, F., GENTY, D., PERRIER, F., LARTIGES, B., RÉGNIER, E., FRANÇOIS, A. LEPLAT, J., TOURON, S., BOUSTA, F., MASSAULT, M., DELMOTTE, M., DUMOULIN, J-P., GIRAULT, F., RAMONET, M., CHAUVEAU, C. & RODRIGUES, P. (2020): Hydrogeological control on carbon dioxide input into the atmosphere of the Chauvet-Pont d’Arc cave.– Sci. Total Environ., 716, 136844. doi: 10.1016/j.scitotenv.2020.136844

BOŽIČEVIĆ, S. (1966): Dvije krške jame s plinom (CO2) [Two karst pits with gas (CO2)– in Croatian].– Geološki vjesnik, 20, 317–327.

BRANTLEY, S., GOLDHABER, M. & RAGNARSDÓTTIR, K. (2007): Crossing Disciplines and Scales to Understand the Critical Zone.– Elements, 3, 307–314. doi: 10.2113/ gselements.3.5.307

BUZJAK, N., PAAR, D. & RADOLIĆ, V. (2010): Utjecaj nadmorske visine na mikroklimu i koncentraciju radona u spiljama u širem području Južnog Velebita [Influence of altitude on microclimate and radon concentration in caves in the wider area of Southern Velebit Mountain – in Croatian].– In: Skup speleologa Hrvatske povodom 110 godina Speleološkog odsjeka “Liburnija”: Zbornik sažetaka. Zadar: SO, 33–33.

BYRNES, C.A., DINAREVIC, S., BUSST, C., BUSH, A. & SHINEBOURNE, E.A. (1997): Is nitric oxide in exhaled air produced at airway or alveolar level?– Eur. Respir. J., 10, 1021–1025. doi: 10.1183/09031936.97.10051021

CMHS (2021): Croatian Meteorological and Hydrological Service. Accessed on 23 April 2021.

COLUCCI, R.R. & PUCILLO, A. (2010): On the analysis of an extreme Bora wind event over the northern Adriatic Sea.– In: 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM) Abstracts, Zürich, Switzerland, Sept. 13–17, Vol. 7, 281.

COMAS-BRU, L., REHFELD, K., ROESCH, C., AMIRNEZHAD-MOZHDEHI, S., HARRISON, S.P., ATSAWAWARANUNT, K., AHMAD, S.M., BRAHIM, Y.A., BAKER, A., BOSOMWORTH, M., BREITENBACH, S.F.M., BURSTYN, Y., COLUMBU, A., DEININGER, M., DEMÉNY, A., DIXON, B., FOHLMEISTER, J., HATVANI, I.G., HU, J., KAUSHAL, N., KERN, Z., LABUHN, I., LECHLEITNER, F. A., LORREY, A., MARTRAT, B., NOVELLO, V.F., OSTER, J., PÉREZMEJÍAS, C., SCHOLZ, D., SCROXTON, N., SINHA, N., WARD, B.M., WARKEN, S. & ZHANG, H. (2020): SISALv2: A comprehensive speleothem isotope database with multiple age-depth models.– Earth Syst. Sci. Data, 12/4, 2579–2606. doi: 10.5194/essd-12-2579-2020

CONSTANTIN, S., MIREA, I.C., PETCULESCU, A., ARGHIR, R.A., MĂNTOIU, D.Ș., KENESZ, M., ROBU, M. & MOLDOVAN, O.T. (2021): Monitoring Human Impact in Show Caves. A Study of Four Romanian Caves.– Sustainability, 13, 1619. doi: 10.3390/su13041619

COWAN, B.D., OSBORNE, M.C. & BANNER, J.L. (2013): Temporal variability of cave-air CO2 in central Texas.– J. Cave Karst Stud., 75, 38–50. doi: 10.4311/2011ES0246

CZUPPON, G., DEMÉNY, A., LEÉL-ŐSSY, S., ÓVARI, M., MOLNÁR, M., STIEBER, J., KISS, K., KÁRMÁN, K., SURÁNYI, G. & HASZPRA, L. (2018): Cave monitoring in the Béke and Baradla caves (Northeastern Hungary): implications for the conditions for the formation cave carbonates.– Int. J. Speleol., 47/1, 13–28. doi: 10.5038/1827-806X.47.1.2110

DRAGOVICH, D. & GROSE, J. (1990): Impact of tourists on carbon dioxide levels at Jenolan Caves, Australia: an examination of microclimatic constraints on tourist cave management.– Geoforum, 21, 111–120. doi: 10.1016/0016-7185(90)90009-U

DREYBRODT, W. (1999): Chemical kinetics, speleothem growth and climate.– Boreas, 28, 347–356. doi: 10.1111/j.1502-3885.1999.tb00224.x

DUBLYANSKI, V.N. & DUBLYANSKI, Y.V. (1998): The problem of condensation in karst studies.– J. Cave Karst Stud., 60/1, 3–17.

DURN, G., RUBINIĆ, V., WACHA, L., PATEKAR, M., FRECHEN, M., TSUKAMOTO, S., TADEJ, N. & HUSNJAK, S. (2018): Polygenetic soil formation on Late Glacial Loess on the Susak Island reflects paleo–environmental changes in the Northern Adriatic area.– Quater. Int., 494, 236–247. doi: 10.1016/j.quaint.2017.06.072

EK, C. & GEWELT, M. (1985): Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries.– Earth Surf. Proc. Land., 10, 173–187. doi: 10.1002/esp.3290100209

FAIMON, J., ŠTELCL, J. & SAS, D. (2006): Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císarská Cave (Moravian Karst, Czech Republic).– Sci. Total Environ., 369, 231–245. doi: 10.1016/j.scitotenv.2006.04.006

FAIRCHILD, I.J. & BAKER, A. (2012): Speleothem Science: From Process to Past Environments.– Wiley–Blackwell. Chichester. doi: 10.1002/9781444361094

FRISIA, S., FAIRCHILD, I.J., FOHLMEISTER, J., MIORANDI, R., SPÖTL, C. & BORSATO, A. (2011): Carbon mass–balance modelling and carbon isotope exchange processes in dynamic caves.– Geochim. Cosmochim. Ac., 75/2, 380–400. doi: 10.1016/j.gca.2010.10.021

GABROVŠEK, F., DREYBRODT, W. & PERNE, M. (2010): Physics of Condensation

Corrosion in Caves.– In: ANDREO, B., CARRASCO, F., DURÁN, J. & LAMOREAUX, J. (eds.). Advances in Research in Karst Media.– Environ. Earth Sci., Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-12486-0_75

GENTY, D., BAKER, A. & VOKAL, B. (2001): Intra–and inter–annual growth rate of modern stalagmites.– Chem. Geol., 176/1–4, 191–212. doi: 10.1016/s0009-2541(00)00399-5

GREGORIČ, A., VAUPOTIČ, J. & GABROVŠEK, F. (2013): Reasons for large fluctuation of radon and CO2 levels in a dead-end passage of a karst cave (Postojna Cave, Slovenia).– Nat. Hazards Earth Syst. Sci., 13, 287–297. doi: 10.5194/nhess-13-287-2013

GRISOGONO, B. & BELUŠIĆ, D. (2009): A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind.– Tellus A, 61, 1–16. doi: 10.1111/j.1600-0870.2008.00369.x

HASAN, O. (2017): Paleookolišna rekonstrukcija slivova Karinskoga mora, Novigradskoga mora i Velebitskog kanala tijekom holocena [Holocene palaeo-environmental reconstruction of the Karin Sea, Novigrad Sea and Velebit Channel catchments– in Croatian].– Unpubl. PhD Theses, University of Zagreb, Faculty of Mining Geology and Petroleum Engineering, Rudarsko-geološko-naftni fakultet.

HOUILLON, N., LASTENNET, R., DENIS, A., MALAURENT, P., MINVIELLE, S. & PEYRAUBE, N. (2017): Assessing cave internal aerology in understanding carbon dioxide (CO2) dynamics: implications on calcite mass variation on the wall of Lascaux cave (France).– Environ. Earth Sci., 76, 170. doi: 10.1007/s12665-017-6498-8

ILO (2021): International Labour Organization, International Chemical Safety Cards, https://www.ilo.org/dyn/icsc/showcard.home. Accessed on 23 April 2021.

IVANČAN-PICEK, B. & VUČETIĆ, V. (1990): Bora on the northern Adriatic coast during the ALPEX SOP, 20–25 March 1982.– Hrvatski meteorološki časopis, 25, 1–12.

KASER, K. (1987): Uništenje šuma na obalnom kraškom području hrvatske Vojne krajine u prvoj polovici 18. stoljeća. Njegovi demografski, privredni i socijalni uzroci [Destruction of forests in the coastal karst area of the Croatian Military Border in the first half of the 18th century. Its demographic, economic and social causes – in Croatian].– In: KAMPUŠ, I. (ed.), Historijski zbornik 40. Savez povijesnih društava Hrvatske, Zagreb, 121–137.

KOVAČIĆ, M., PAVELIĆ, D., VLAHOVIĆ, I., MARKOVIĆ, F., WACHA, L., KAMPIĆ, Š., RONČEVIĆ, S. & DREMPETIĆ, D. (2018): Pleistocene alluvial and aeolian deposits with tephra on the island of Lopud (eastern mid- Adriatic, Croatia): Provenance, wind regime, and climate controls.– Quater. Int., 494, 92–104. doi: 10.1016/j.quaint.2017.11.054

KUHTA, M., BOŽIČEVIĆ, S., KAPELJ, S. & MIKO, S. (1999): Studija zaštite i korištenja vrijednih prirodnih cjelina Modrič špilje i njene okoline [Study of protection and use of valuable natural units of Modrič cave and its surroundings – in Croatian].– Archives of the Croatian Geological Survey, 68.

KUHTA, K. (2010): Špilja Manita peć, NP Paklenica – Izvještaj o topografskom snimanju i uspostavi praćenja kriptoklimatskih parametara [Manita peć Cave, NP Paklenica – Report on topographic survey and establishing of the cryptoclimatological parameters monitoring – in Croatian].– Hidrogeos d.o.o., Zagreb.

KUKULJAN, L., GABROVŠEK, F., COVINGTON, M.D. & JOHNSTON V.E. (2021): CO2 dynamics and heterogeneity in a cave atmosphere: role of ventilation patterns and airflow pathways.– Theor. Appl. Climatol. doi: 10.1007/s00704-021-03722-w

KUŽIĆ, K. (1999). Zabilježbe o “malom ledenom dobu” i njegovim posljedicama u hrvatskim krajevima. [Notes on “Little Ice Age” and its consequences for the Croatian lands – in Croatian].– Povijesni prilozi, 18/18, 373–404.

LI, H., SPÖTL, C. & CHENG, H. (2021): A high-resolution speleothem proxy record of the Late Glacial in the European Alps: extending the NALPS19 record until the beginning of the Holocene.– J. Quaternary Sci., 36, 29–39. doi: 10.1002/jqs.3255

LIÑÁN, C., VADILLO, I. & CARRASCO, F. (2008): Carbon dioxide concentration in air within the Nerja Cave (Malaga, Andalusia, Spain).– Int. J. Speleol., 37/2, 99–106. doi: 10.5038/1827-806X.37.2.2

LIÑÁN, C., DEL ROSAL, Y., CARRASCO, F., VADILLO, I., BENAVENTE, J. & OJEDA, L. (2018): Highlighting the importance of transitional ventilation regimes in the management of Mediterranean show caves (Nerja-Pintada system, southern Spain).– Sci. Total Environ., 631–632, 1268–1278. doi: 10.1016/j.scitotenv.2018.02.304

LOWE, J.J. & WALKER, M.J.C. (1998): Reconstructing Quaternary Environments. 2nd ed.– Longman, Essex, 446.

LUETSCHER, M., LISMONDE, B. & JEANNIN, P.-Y. (2008): Heat exchanges in the heterothermic zone of a karst system: Monlesi Cave, Swiss Jura Mountains.– J. Geophys. Res., 113. doi: 10.1029/2007JF000892

MALEZ, M. (1954): Pećine otoka Iža i Ugljana [Caves of the islands Iž and Pašman – in Croatian].– Speleolog, 2/1, 1–16.

MALEZ, M. (1987): Kvartarna fauna vertebrata iz Modriča pećine kod Rovanjske (Hrvatska) [Quaternary vertebrate fauna from Modrič Cave (Croatia) near Rovanjska – in Croatian].– RAD 431: Razred za prirodne znanosti (JAZU do 1991.), 22/431, 141–154.

MILANOLO, S. & GABROVŠEK, F. (2009): Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina.– Bound.-Lay. Meteorol., 131, 479–493. doi:
10.1007/s10546-009-9375-5

MCCABE, G.J. & MARKSTROM, S.L. (2007): A Monthly Water-Balance Model Driven by a Graphical User nterface.– U.S. Geological Survey, open-file report, 2007–1088.

MIKO, S., KUHTA, M. & KAPELJ, S. (2001): Bat Guano Influence on the Geochemistry of Cave Sediments from Modrič Cave; Croatia.– In: 13th International Congress of Speleology: Speleology in the third millennium: Sustainable Development of Karst Environments, Brasilia.

MIKO, S., KUHTA, M. & KAPELJ, S. (2002): Environmental baseline geochemistry of sediments and percolating waters in the Modrič Cave, Croatia.– Acta Carsologica, 31/1, 135–149. doi: 10.3986/ac.v31i1.409

NOAA (2021): National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. Accessed on 27 August 2021.

PEARMAN, G.I. & HYSON, P. (1981): The annual variation of atmospheric CO2 concentration observed in the northern hemisphere.– J. Geophys. Res., 86/C10, 9839-9843. doi:10.1029/JC086iC10p09839

PRELOVŠEK, M., ŠEBELA, S. & TURK, J. (2018). Carbon dioxide in Postojna Cave (Slovenia): spatial distribution, seasonal dynamics and evaluation of plausible sources and sinks.– Environ. Earth Sci., 77/7. doi: 10.1007/s12665-018-7459-6

RADOLIĆ, V., MIKLAVČIĆ, I., POJE, M., STANIĆ, D. & VUKOVIĆ, B. (2012): Radon levels in Manita Peć Cave Croatian NP Paklenica) and assessment of effective dose received by visitors and tourist guides.– In: IRPA13 Full Paper–13th International Congress of the International Radiation Protection Association, P10, 1056, 1–10.

REGATTIERI, E., ZANCHETTA, G., ISOLA, I., ZANELLA, E., DRYSDALE, R.N., HELLSTROM, J.C., ZERBONI, A., DALLAI, L., TEMA, E., LANCI, L., COSTA, E. & MAGRÌ, F. (2019): Holocene Critical Zone dynamics in an Alpine catchment inferred from a speleothem multiproxy record: disentangling climate and human influences.– Sci. Rep., 9, 1–9. doi: 10.1038/s41598-019-53583-7

RIECHELMANN, S., BREITENBACH, S., SCHRÖDER-RITZRAU, A., MANGINI, A., & IMMENHAUSER, A. (2019): Ventilation and cave air PCO2 in the Bunker Emst Cave System (NW Germany): implications for speleothem proxy data.– J. Cave Karst Stud., 81, 98–112. doi:10.4311/2018ES0110

RUDZKA, D., MCDERMOTT, F. & SURIĆ, M. (2012): A late Holocene climate record in stalagmites from Modrič Cave (Croatia).– J. Quaternary Sci., 27/6, 585–596. doi: 10.1002/jqs.2550

RUKAVINA, A. (1990): Još žive velebitske šume. [Forests of Velebit still live – in Croatian] – Senjski zbornik, 17/1, 281–290.

SPÖTL, C., FAIRCHILD, I.J. & TOOTH, A.F. (2005): Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves.– Geochim. Cosmochim. Ac., 69/10, 2451–2468. doi: 10.1016/j.gca.2004.12.009

SPÖTL, C., MANGINI, A., & RICHARDS, D.A. (2006): Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps.– Quaternary Sci. Rev., 25/9–10, 1127–1136. doi: 10.1016/j.quascirev.2005.10.006

SRŠEN, L. (2019): Monitoring okolišnih uvjeta špilje Modrič [Monitoring of the cave environmental settings in Modrič Cave – in Croatian].– Unpubl. Graduate thesis, University of Zadar, 44.

SURIĆ, M. (2018): Speleothem-based Quaternary research in Croatian karst – a review.– Quatern. Int., 490, 113–122. doi: 10.1016/j.quaint.2018.04.043

SURIĆ, M. & JURAČIĆ, M., (2010): Late Pleistocene – Holocene environmental changes – records from submerged speleothems along the Eastern Adriatic coast (Croatia).– Geol. Croat., 63/2. doi: 104154/gc.2010.13

SURIĆ, M., ROLLER-LUTZ, Z., MANDIĆ, M., KRAJCAR BRONIĆ, I. & JURAČIĆ, M. (2010): Modern C, O, and H isotope composition of speleothem and dripwater from Modrič Cave, eastern Adriatic coast (Croatia).– Int. J. Speleol., 39, 91–97. doi: 10.5038/1827-806X.39.2.4

SURIĆ, M., LONČARIĆ, R., LONČAR, N., BUZJAK, N., BAJO, P. & DRYSDALE, R.N. (2017): Isotopic characterization of cave environments at varying altitudes on the eastern Adriatic coast (Croatia)–Implications for future speleothem-based studies.– J. Hydrol., 545, 367–380. doi: 10.5038/1827-806X.39.2.4

SURIĆ, M., CZUPPON, G., LONČARIĆ, R., BOČIĆ, N., LONČAR, N., BAJO, P. & DRYSDALE, R.N. (2020): Stable Isotope Hydrology of Cave Groundwater and Its Relevance for Speleothem-Based Paleoenvironmental Reconstruction in Croatia.– Water, 12, 2386. doi: 10.3390/w12092386

SURIĆ, M., BAJO, P., LONČARIĆ, R., LONČAR, N., DRYSDALE, R., HELLSTROM, J. & HUA, Q. (2021): Speleothem records of the hydroclimate variability throughout the last glacial cycle from Manita peć Cave (Velebit Mountain, Croatia). Geosciences, 11/8, 347, 21 doi:10.3390/geosciences11080347

ŠTEFANEC, N. (2000): Trgovina drvetom na Triplex Confiniumu ili kako izvući novac iz senjskih šuma (1600-1630)? [Wood Trade on the Triplex Confinium or How to Extract Money from Senj Woodlands (1600-1630)? – in Croatian].– In: Proceedings, Triplex Confinium (1500.-1800.): ekohistorija. Zadar, Croatia, 337–365.

THORNTHWAITE, C.W. (1948): An approach toward a rational classification of climate.– Geogr. Rev., 38, 55–94. doi: 10.2307/210739

VIETEN, R., WINTER, A., WARKEN, S.F., SCHRӦDER-RITZRAU, A., MILLER, T.E. & SCHOLZ, D. (2016): Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico.– Int. J. Speleol., 45, 259–273. doi: 10.5038/1827-806X.45.3.1983

WACHA, L., GALOVIĆ, L., KOLOSZÁR, L., MAGYARI, A., CHIKÁN, G. & MARSI, I. (2013): The chronology of the Šarengrad II loess-palaeosol section (Eastern Croatia).– Geol. Croat., 66/3, 191–203. doi: 10.4154/gc.2013.18