The origin of a complex breccia body within the Upper Cretaceous/Early Eocene succession on Pag Island (Karst Dinarides, Croatia): karstic dissolution and collapse or dilational faulting and collapse origin?

Main Article Content

Dražen Kurtanjek
Damir Bucković
Darko Tibljaš
Blanka Cvetko Tešović

Abstract

A kilometre west of Pag Town on Pag Island, Croatia, within the Upper Cretaceous shallow-water carbonate succession, there is a large breccia body that has an irregular, quasi-circular shape and a subvertical-oblique position in relation to the bedding of the host rock. The breccia clasts and fragments consist almost entirely of the Upper Cretaceous host rock with only sporadic clasts of the Lower Eocene foraminiferal (alveolinid) limestones. In the brecciated body, there are three breccia types. 1) crackle breccia, 2) mosaic breccia, and 3) chaotic breccia. Based on the textural and structural characteristics of these types of breccia such as chaotic appearance and random fabric, very poorly sorted material, angular fragments, the composition reflecting only
the host rock lithology, two genetic scenarios or concepts for the origin of Pag Town breccia body were considered, with observations supporting each of them. The first concept involves host rock dissolution resulting in a widened dissolution cavity into which wall and roof rocks progressively collapsed, and the second concept involves the collapse of voids produced by dilational fault displacement. A common prerequisite to both opposing scenarios is the existence of a subsurface cavity or void where the accumulation of rock clasts and fragments occurred. It is assumed that the timing of the cavity formation is related mainly to karstification during the Late Cretaceous-Early Eocene emersion phase or is related to dilational faulting during the  Palaeogene Dinarides thrusting event.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

AUBOUIN, J., BLANCHET, R., CADET, J.-P., CELET, P., CHARVET, J., CHOROWICZ, J., COUSIN, M. & RAMPNOUX, J.-P. (1970): Essai sur la géologie des Dinarides.– Bull. Soc. Géol. Fr. Sér., 7, 12, 1060–1095. doi: 10.2113/gssgfbull.S7-XII.6.1060

BABIĆ, LJ. & ZUPANIČ, J. (2016): The youngest stage in the evolution of the Dinaric Carbonate Platform: the Upper Nummulitic Limestones in the North Dalmatian foreland, Middle Eocene, Croatia.– Nat. Croat., 25/1, 55–71. doi: 10.20302/NC.2016.25.3

BRINDLEY, G.W. & BROWN, G. (1980): Crystal structures of clay minerals and their X-ray identification.– Min. Soc., London, 495 p. doi: 10.1180/mono-5

BRLEK, M., KORBAR, T., CVETKO TEŠOVIĆ, B., GLUMAC, B. & FUČEK, L. (2013): Stratigraphic framework, discontinuity surfaces, and regional significance of Campanian slope to ramp carbonates from central Dalmatia, Croatia.– Facies, 59, 779–801. doi: 10.1007/s10347-012-0342-0

BROWN, G. (1961): The X-ray identification and crystal structures of clay minerals.– Min. Soc., Clay Minerals Group, London, 544 p.

CADET, J.P. (1978): Essai sur l’évolution alpine d’une paléomarge continentale; les confins de la Bosnie-Herzegovine et du Monténegro (Yougoslavie).– Mem. Soc. Geo. F., 133, 1−83.

CHANNELL, J.E.T., D’ARGENIO, B. & HORVÁTH, F. (1979): Adria, the African promontory, in Mesozoic Mediterranean palaeogeography.– Earth-Sci Rev., 15/3, 213−292. doi: 10.1016/0012-8252(79)90083-7

CHOQUETTE, P.W. & JAMES, N.P. (1988): Introduction.– In: JAMES, N.V. & CHOQUETTE, P.W. (eds.): Paleokarst, 1−21, Springer, New York.

CHOROWITZ, J. (1977): Etude geologique des Dinarides le long de la structure transversale Split-Karlovac (Yugoslavie).– Unpubl. Ph. D. thesis, Publ. Soc. Geol. Nord, Villeneuve d Ascq., 11, 1−331.

COOPER, J.D. & KELLER, M. (2001): Paleokarst in the Ordovician of the southern Great Basin, USA: implications for sea-level history.– Sedimentology, 48, 855−873.

CVETKO TEŠOVIĆ, B., MARTINUŠ, M., GOLEC, I. & VLAHOVIĆ, I. (2020): Lithostratigraphy and biostratigraphy of the uppermost Cretaceous to lowermost Palaeogene shallow-marine succession: top of the Adriatic Carbonate Platform at the Likva Cove section (island of Brač, Croatia).– Cretaceous Research, 114, 104507. doi: 10.1016/j.cretres.2020.104507

ĆOSOVIĆ, V., BALONČIĆ, D., KOIĆ, M., MARJANAC, T., MORO, A., GUŠIĆ, I. & JELASKA, V. (1994): Paleontological evidence of Paleogene transgression on Adriatic carbonate platform.– Geol. Mediterr., 21/3–4, 49–53.

DAVIES, W.E. (1949): Features of cave breakdown.– National Speleothem Society Bulletin, 11, 34–35.

DICKSON, J.A.D. (1966): Carbonate identification and genesis as revealed by staining.– J. Sediment. Petrol., 36/2, 491−505.

DROBNE, K., VLAHOVIĆ, I., TRUTIN, M., PAVLOVEC, R., ĆOSOVIĆ, V., BABAC, D., CIMERMAN, F., LUČIĆ, D. & PAVŠIČ, J. (1991): Excursion B – Ravni Kotari, Paleogene.– In: VLAHOVIĆ, I. & VELIĆ, I. (eds): Some Aspects of the Shallowwater Sedimentation on the Adriatic Carbonate Platform (Permian to Eocene), 2nd International Symposium on the Adriatic Carbonate Platform, Excursion Guidebook. Institute of Geology, Zagreb, 53–70.

DURN, G., OTTNER, F., TIŠLJAR, J., MINDSZENTY, A. & BARUDŽIJA, U. (2003): Regional Subaerial Unconformities in Shallow-Marine Carbonate Sequences of Istria: Sedimentology, Mineralogy, Geochemistry and Micromorphology of Associated Bauxites, Palaeosols and Pedo-sedimentary Complexes.– In: VLAHOVIĆ, I. & TIŠLJAR, J. (eds): Field trip guidebook: Evolution of depositional environments from the Palaeozoic to the Quaternary in the Karst Dinarides and the Pannonian Basin, 22nd IAS Meeting of Sedimentology, Institute of Geology, Zagreb, 209–255.

ESTEBAN, M. (1991): Palaeokarst: practical applications.– In: WRIGHT, V.P., ESTEBAN, M. & SMART, P.L. (eds.): Palaeokarst and palaeokarstic reservoirs: University of Reading, Postgraduate Research for Sedimentology, PRIS Contribution No. 152, 89−119.

EVAMY, B.D. (1969): The precipitational environment and correlation of some calcite cements deduced from artificial staining.– J. Sediment. Petrol., 39/2, 787−821.

FERRILL, D.A., WYRICK, D.Y. & SMART, K.J. (2011): Coseismic, dilational‐fault and extension‐fracture related pit chain formation in Iceland: Analog for pit chains on Mars.– Lithosphere, 3/2, 133–142. doi: 10.1130/L123.1

FORD, D.C. & WILLIAMS, P.W. (1989): Karst geomorphology and hydrology.– Unwin Hyman, London, 601 p. doi: 10.1007/978-94-011-7778-8

GUŠIĆ, I. & JELASKA, V. (1990): Stratigrafija gornjokrednih naslaga otoka Brača u okviru geodinamske evolucije Jadranske karbonatne platforme (Upper Cretaceous stratigraphy of the Island of Brač within the geodynamic evolution of the Adriatic Carbonate Platform).– Opera Acad. sci. art. Slav. merid. Zagreb, 69, 160 p.

GUŠIĆ, I. & JELASKA, V. (1993): Upper Cenomanian-Lower Turonian sea-level rise and its consequences on the Adriatic-Dinaric carbonate platform.– Geol. Rundsch., 82/4, 676−686. HIGGINS, M. W. (1971): Cataclastic rocks.– Prof. Pap. U.S. Geol. Surv., 687, 97p.

JELASKA, V., GUŠIĆ, I., JURKOVŠEK, B., OGORELEC, B., ĆOSOVIĆ, V., ŠRIBAR, L. & TOMAN, M. (1994): The Upper Cretaceous geodynamic evolution of the Adriatic– Dinaric carbonate platform(s).– Geol. Mediterr., 21/3–4, 89–91. doi: 10.3406/geolm.1994.1534

JELASKA, V. (2003): Carbonate Platforms of the External Dinarides.– In: VLAHOVIĆ, I. & , J. (eds.): Evolution of depositional environments from the Palaeozoic tothe Quaternary in the Karst Dinarides and the Panonian Basin. 22nd IAS Meeting of Sedimentology. Field Trip Guidebook, 67−71 p.

JENKYNS, H.C. (1991): Impact of Cretaceous sea level rise and anoxic events in the Mesozoic carbonate platform of Yugoslavia.– Am. Assoc. Pet. Geol. B., 75, 1007−1017.

KAUFMAN, G. & BRAUN, J. (2000): Karst aquifer evolution in fractured, porous rocks.– Water resources research, 36/6, 1381–1391. doi: 10.1029/1999WR900356

KERANS, C. (1988): Karst-controlled reservoir heterogeneity in Ellenberger Group carbonates of west Texas.– Am. Assoc. Petr. Geol. B., 72, 1160−1183.

KERANS, C. (1993): Description and interpretation of karst-related breccia fabrics, Ellenburger Group, west Texas.– In: WILSON, J.L. & YUREWICZ, D.A. (eds.): Paleokarst Related Hydrocarbon Reservoirs, 18, SEPM Core Workshop, 181−200.

KORBAR, T. (2009): Orogenic evolution of the External Dinarides in the Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates.– Earth-Sci. Rev., 96, 296−312. doi: 10.1016/j.earscirev.2009.07.004

KOŠIR, A. (1997): Eocene platform-to-basin depositional sequence, southwestern Slovenia.– Gaea Heidelbergiensis, 3, 205 p.

LAZNICKA, P. (1988): Breccias and coarse fragmentites: Petrology, environments, associations, ores.– Developments in Economic Geology, 25, 351 p.

LOUCKS, R.G. (1999): Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications.– Am. Assoc. Petr. Geol. B., 83, 1795−1834.

LOUCKS, R.G. (2007): A Review of Coalesced, Collapsed-Paleocave Systems and Associated Suprastratal Deformation.– Acta Carsologica, 36/1, 121–132. doi: 10.3986/ac.v36i1.214

LOUCKS, R.G. & HANDFORD, R.H. (1992): Origin and recognition of fractures, breccias, and sediment fills in paleocave-reservoir networks.– In: CANDELARIA, M.P. & REED, C.L. (eds.): Paleokarst, karst related diagenesis and reservoir development: examples from Ordovician-Devonian age strata of West Texas and the Mid-Continent:
Permian Basin Section, SEPM Publication, 92–33, 31−44.

LOUCKS, R.G. & MESCHER, P. (2001): Paleocave facies classification and associated pore types.- Am. Assoc. Petr. Geol., Southwest Section, Annual Meeting, Dallas, Texas, CD-ROM, 18.

MAJCEN, Ž., KOROLIJA, B., SOKAČ, B. & NIKLER, L. (1970): Osnovna geološka karta SFRJ 1:100000, list Zadar L 33–139 [Basic Geological Map of SFRY 1:10000, Zadar sheet – in Croatian].– Inst. geol. istraživanja, Zagreb, Savezni geološki zavod, Beograd.

MAMUŽIĆ, P., SOKAČ, B. & VELIĆ, I. (1970): Osnovna geološka karta SFRJ 1:100000, list Silba L 33–126 [Basic Geological Map of SFRY 1:100000, Silba sheet – in Croatian].– Inst. geol. istraživanja, Zagreb, Savezni geološki zavod, Beograd.

MARJANAC, T. & ĆOSOVIĆ, V. (2000): Tertiary Depositional History of Eastern Adriatic Realm.– Vijesti Hrvatskoga geološkog drustva, 37, 93–103.

MATIČEC, D., VLAHOVIĆ, I., VELIĆ, I. & TIŠLJAR, J. (1996): Eocene limestones overlying Lower Cretaceous deposits of western Istria (Croatia): did some parts of present Istria form land during the Cretaceous?– Geol. Croat., 49/1, 117–127.

MELIM, L.A., WESTPHAL, H., SWART, P.K., EBERLI, G. & MUNNECKE, A. (2002): Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas.– Mar. Geol., 185, 27–53. doi: 10.1016/S0025-3227(01)00289-4

MOORE, D.M. & REYNOLDS, R.C. (1997): X-Ray Diffraction and the Identification and Analysis of Clay Minerals.– Oxford University Press, Oxford, 378 p.

MORT, K. & WOODCOCK, N.H. (2008): Quantifying fault breccia geometry: Dent Fault, NW England.– J. Struct. Geol. 30, 701–709. doi: 10.1016/j.jsg.2008.02.005

OTONIČAR, B. (2007): Upper Cretaceous to Paleogene Forbulge Unconformity Associated with Foreland Basin Evolution (Kras, Matarsko Podolje and Istria; SW Slovenia and NW Croatia).– Acta Carsologica, 36/1, 101–120. doi: 10.3986/ac.v36i1.213

OTONIČAR, B. (2016): Stratigraphy and evolution of the forebulge related paleokarst – introduction to excursions A and C.– In: OTONIČAR, B. & GOSTINČAR, P. (eds.): Paleokarst: abstracts & guide book, 24th International Karstological School Classical Karst, Postojna, 42–50.

PALMER, A.N. (1991): The origin and morphology of limestone caves.– Geol. Soc. Am. Bull., 103, 1−21. doi: 10.1130/0016-7606(1991)103%3C0001:OAMOLC%3E2.3.CO;2

PALMER, A.N. (1995): Geochemical models for the origin of macroscopic solution porosity in carbonate rocks.– In: BUDD, D.A., SALLER, A.H. & HARRIS, P.M. (eds.): Unconformities and porosity in carbonate strata: AAPG Memoir, 63, 77–102.

PAMIĆ, J., GUŠIĆ, I. & JELASKA, V. (1998): Geodynamic evolution of the Central Dinarides.– Tectonophysics, 297, 251–268. doi: 10.1016/S0040-1951(98)00171-1

PANALYTICAL (2004): X’Pert HighScore Plus, Version 2.1, Almelo.

PEH, Z. & KOVAČEVIĆ GALOVIĆ, E. (2016): Geochemistry of Lower Palaeogene bauxites – a unique signature for the tectonostratigraphic evolution of part of the Croatian Karst.– Geol. Croat., 69/2, 269–279. doi: 10.4154/gc.2016.24

PRTOLJAN, B. & GLOVACKI JERNEJ, Ž. (1994): On the orgin of the Oklad Breccia on the Island of Brač (Southern Croatia).– Geol. Croat., 47/1, 67–72.

RAMOVŠ, A., HINTERLECHNER-RAVNIK, A., KALENIĆ, M., KARAMATA, S., KOCHANSKY-DEVIDÉ, V., KRSTIĆ, B., KULENOVIĆ, E., MIRKOVIĆ, M., PETKOVSKY, P., SREMAC, J. & TEMKOVA, V. (1990): Stratigraphic Correlation Forms of the Yugoslav Paleozoic.– Rend. Soc. Geol. It., 12, 359−383.

SCHMID, S.M., FÜGENSCHUH, B., KISSLING, E. & SCHUSTER, R. (2004): Tectonic map and overall architecture of the Alpine orogen.– Eclogae Geol. Helv., 97, 93–117. doi: 10.1007/s00015-004-1113-x

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine- Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss J. Geosci., 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHOLZ, C.H. (1990): The mechanics of earthquakes and faulting.– Cambridge University Press, 442 p.

SOKAČ, B., NIKLER, L., VELIĆ, I. & MAMUŽIĆ, P. (1974): Osnovna geološka karta SFRJ 1:100000, list Gospić L 33–127 [Basic Geological Map of SFRY 1:100000, Gospić sheet – in Croatian].– Inst. geol. istraživanja, Zagreb, Savezni geološki zavod, Beograd.

SPRY, A. (1969): Metamorphic Textures.– Pergamon Press, London, 1−350.

SREMAC, J. (2005): Equatorial Shelf of the Palaeozoic Supercontinent – Cradle of the Adriatic Carbonate Platform.– Geol. Croat., 58/1, 1−19. doi: 10.4154/GC.2005.01

ŠPANIČEK, J., ĆOSOVIĆ, V., MRINJEK, E. & VLAHOVIĆ, I. (2017): Early Eocene evolution of carbonate depositional environments recorded in the Čikola Canyon (North Dalmatian Foreland Basin, Croatia).– Geol. Croat., 70/1, 11–25. doi: 10.4154/gc.2017.05

TARI, V. (2002): Evolution of the northern and western Dinarides: A tectonostratigraphic approach.– European Geosciences Union Stephan Mueller Special Publication Series, 1, 223–236. doi: 10.5194/smsps-1-223-2002

TIŠLJAR, J., VLAHOVIĆ, I., VELIĆ, I. & SOKAČ, B. (2002): Carbonate Platform Megafacies of the Jurassic and Cretaceous Deposits of the Karst Dinarides.– Geol. Croat., 55/2, 139–170. doi: 10.4154/GC.2002.14

VELIĆ, I., VLAHOVIĆ, I. & MATIČEC, D. (2002): Depositional sequences and palaeogeography of the Adriatic carbonate platform.– Mem. Soc. Geol. It., 57, 141−151.

VENTURINI, S. & TENTOR, M. (2010): La breccias di Slivia: una testimonianza di eventi paleotettonici Campiano–Maastrichtiano nel Carso Triestino.– Natura Nascosta, 41, 1–15.

VLAHOVIĆ I., TIŠLJAR, J., VELIĆ, I. & MATIČEC, D. (2005): Evolution of the Adriatic carbonate platform; paleogeography, main events and depositional dynamics.– Palaeogeogr. Palaeoclim. Palaeoec., 220, 333–360.

WALKER, R.J., HOLDSWORTH, R.E., IMBER, J. & ELLIS, D. (2011): The development of cavities and clastic infills along fault-related fractures in Tertiary basalts on the NE Atlantic margin.– J. Struct. Geol., 33/2, 92−106. doi: 10.1016/j.jsg.2010.12.001

WHITE, E.L. & WHITE, W.B. (1969): Processes of cavern breakdown.– National Speleothem Society Bulletin, 31, 83–96.

WOODCOCK, N.H. & MORT, K. (2008): Classification of fault breccias and related fault rocks.– Geol. Mag., 145, 435−440. doi: 10.1017/S0016756808004883

WOODCOCK, N.H., OMMA, J.E. & DICKSON, J.A.D. (2006): Chaotic breccia along the Dent Fault, NW England: implosion or collapse of a fault void?– J. Geol. Soc. Lond., 163, 431−446. doi: 10.1144/0016-764905-067

WOODCOCK, N.H., MILLER A.V.M. & WOODHOUSE C.D. (2014): Chaotic breccia zones on the Pembroke Peninsula, south Wales: Evidence for collapse into voids along dilational faults.– J. Struct. Geol., 69, 91−107. doi: 10.1016/j.jsg.2014.09.019