Late Pleistocene climate history of the Baranja loess plateau – evidence from the Zmajevac loess-paleosol section (northeastern Croatia)

Main Article Content

Adriano Banak
Oleg Mandić
Marijan Kovačić
Davor Pavelić

Abstract

The Zmajevac loess-palaeosol succession (LPS) of the northeastern Baranja loess plateau is exposed along the southern slope of Bansko Brdo, on the western bank of the Danube River. The investigated 17.5-m-thick section shows 4 palaeosol, 1 loess-like and 6 loess horizons. Their integrative palaeoenvironmental analysis combines quantified dana from the mollusc record, magnetic susceptibility, grain-size, calcimetry and mineral abundances to reconstruct the pattern of regional palaeoclimate evolution. This result combined with infrared optically stimulated luminescence age est CLEAL imates by GALOVIĆ et al. (2009) enabled correlation of the depositional units to Middle to the Late Pleistocene Marine Isotope Stages (MIS) 6 to 2. Magnetic susceptibility measurements show strong peaks in the palaeosol horizons pointing to increased concentrations of pedogenic ferrimagnetic minerals. Sedimentological and mineralogical parameters are in good agreement with other Pannonian Basin LPS. Terrestrial gastropod palaeoecology based on 1705 specimens of 13 species counted from loess and loess-like horizons documents cyclic transitions between cryophilous to cold resistant and mesophilous to thermophilous assemblage types. Whereas Helicopsis striata, Arianta arbustorum and Chondrula tridens are common throughout the succession, the typical loess representatives Pupilla sp., Vallonia tenuilabris and Columella columella are abundant only in certain horizons. Nevertheless, species tolerating open and dry habitats are abundant throughout the succession. The faunal spectra for the samples prove the dominance of transitional palaeoecological assemblage types, whereas uniformly defined types are rare. One of these, the Columella columella assemblage from the base of the section proved to be indicative of the Penultimate Glacial Maximum.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers