Palaeofluid evolution in a fractured basalt hosted reservoir in the Üllés-Ruzsa-Bordány area, southern sector of the Pannonian Basin

Main Article Content

Barbara Szabó
Félix Schubert
Tivadar M. Tóth
Gábor Steinbach


Extensive Miocene volcanic activity produced basaltic and pyroclastic successions, which were penetrated by many wells in the area of Üllés-Ruzsa-Bordány, in the western and central part of the Great Hungarian Plain. The Kecel Basalt comprises primary porosity from a high proportion of vesicles and significant secondary fracture porosity, as well. Due to the significant fracture porosity, some depth intervals show good reservoir characteristics, although the fractures crosscutting the rock body are partly or entirely cemented by various minerals. Based on the textural and mineralogical features, four distinct vein types can be distinguished, named after their volumetrically most abundant cement phases, i.e. potassium-feldspar (Kfp-), calcite (Cal-), laumontite (Lmt-) and analcime (Anl-) types. This study focuses on probably the youngest of these vein types, the Anl-type. Based on the study of veins and mineral sequences, the direction of temperature changes cannot be given unequivocally for every stage of cementation, but crystallization of the Anl-type veins might have occurred at lower temperatures than the formation of the Lmt-type veins. Fluid inclusion studies suggest that hydrocarbon migration and accumulation took place after cementation of the first three vein types (Kfp-, Cal- and Lmt-types). In the newly opened fracture system, two types of hydrocarbon (HC1 and HC2)-bearing fluid inclusion assemblages were captured during precipitation of analcime and later zeolites. This refers to two stages of hydrocarbon migration in the fracture system. Observations of the fluorescence colours and low temperature behaviours of the hydrocarbon-bearing inclusions, the earlier HC1 petroleum-inclusions captured heavier (presumably less mature oils), while the later ones (HC2) lighter (presumably more mature) oils. The HC2 petroleum seems to be very similar to the crude oil sampled in a well in the area based on their fluorescence parameters.


Download data is not yet available.

Article Details

Original Scientific Papers


APLIN, A.C:, MACLEOD, G., LARTER, S.R., PEDERSEN, K.S., SORENSEN, H. & BOOTH, T. (1999): Combined use of Confocal Laser Scanning Microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fuid inclusions.- Mar. Petrol. Geol., 16, 97-110.

BADICS, B., UHRIN, A., VETŐ, I., BARTHA, A. & SAJGÓ, CS. (2011): Basin-centred gas in the Makó Trough, Hungary: a 3D basin and petroleum system modelling investigation.- Petrol. Geosci., 17, 405-416.

BADICS, B. & VETŐ, I. (2012): Source rocks and petroleum systems in the Hungarian part of the Pannonian Basin: The potential for shale gas and shale oil plays.- Mar. Petrol. Geol., 31, Issue 1, 53-69.

BALÁZS, E. & NUSSZER, A. (1987): Magyarország medenceterületeinek kunsági (pannóniai s. str.) emeletbeli vulkanizmusa. [Volcanism in the Hungarian basins in the time of Kunsagi (Pannonian .s. str.) - in Hungarian].- A Magyar Állami Földtani Intézet Évkönyve, 69, 95-113.

BART-WIRSCHING, U. & HÖLLER, H. (1989): Experimental studies on zeolite formation conditions.- Eur. J. Mineral., 1, 498–506.

BODNAR, R.J. (1990): Petroleum migration in the Miocene Monterey Formation, California, USA: constraints from fluid-inclusion studies.- Mineral. Mag., 54, 295-304.

BODNAR, R.J. (1993): Revised equation and table for determining the freezing point depression of H2O-NaCl solutions.- Geochim. Cosmochim. Ac. (United States), 57, 3 p.

BONS, P.D. (2000): The formation of veins and their microstructures.- Journal of the Virtual Explorer, 2.

BOURDET, J., PIRONON, J., LEVRESSE, G. & TRITLLA, J. (2010): Petroleum accumulation and leakage in a deeply buried carbonate reservoir, Níspero field (Mexico).- Mar. and Petrol. Geol., 27, 126-142.

BURKE, E.A.J. (1994): Raman microspectrometry of fluid inclusions: the daily practice. Fluid Inclusions in Minerals: Methods and Applications.- In: DE VIVO, B. & FREZOTTI, M.L. (eds.): Short Course of the IMA Working Group „Inclusions in Minerals”, Virginia Tech (Pontignano - Siena, 1-4 September, 1994).

COOMBS, D.S., ELLIS, A.J., FYFE, W.S. & TAYLOR, A.M. (1959): The zeolite facies, with comments on the interpretation of geothermal syntheses.- Geochim. Cosmochim. Ac., 17, 53–107.

CSEREPESNÉ, M.B. (1978): A Kiskunhalas-Ny-3. szénhidrogénkutató fúrással feltárt alsó-pannóniai bazalt és proterozoi migmatit képződményekről. [The basaltic and proterozooic magmatic rocks of Kiskunhalas-Ny-3 hydrocarbon exploration well. in Hungarian]- Földtani Közlöny, 108/1, 53-64.

DE CAPITANI, C. (1994): Gleichgewichts-Phasendiagramme: Theorie und Software. Beihefte zum European Journal of Mineralogy, 72.- Jahrestagung der Deutschen Mineralogischen Gesellschaft 6, 48.

DE CAPITANI, C. & BROWN, T.H. (1987): The computation of chemical equilibrium in complex systems containing non-ideal solutions.- Geochim. Cosmochim. Ac., 51, 2639-2652.

DIAMOND, L.W. (2003): Systematics of H2O inclusions.- In: SAMSON I., ANDERSON A. & MARSHALL D. (Eds.) "Fluid Inclusions: Analysis and Interpretation" Short Course, Volume 32. Mineralogical Association of Canada. 55-79.

DOLTON, G.L. (2006): Pannonian Basin Province, Central Europe (Province 4808) - Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment. USGS, Reston, Virginia.

GEORGE, S.C., KRIEGER, F.W., EADINGTON, P.J., QUEZADA, R.A., GREENWOOD, P., EISENBERG, L.I., HAMILTON, P.J. & WILSON, M.A. (1997): Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea.- Org. Geochem., 26, 3–4, 155-173.

GOLDSTEIN, R.H. (2003): Petrographic analysis of fluid inclusions.- Fluid inclusions: Analysis and interpretation, 32, 9-54.

GRIMMER, J.O.W., PIRONON, J., TEINTURIER, S. & MUTTERER, J. (2003): Recognition and differentiation of gas condensates and other oil types using microthermometry of petroleum inclusions (Abstract).- J. Geochem. Explor., 78-79, 367-371.

HOLLAND, T.J. &POWELL, R. (1998): An internally consistent thermodynamic data set for phases of petrological interest.- J. Metamorph. Geol., 16, 309-343.

JØRGENSEN, Ø. (2006): The regional distribution of zeolites in the basalts of the Faroe Islands and significance of zeolites as paleotemperature indicators.- In: CHALMERS, J.A. & WAAGSTEIN, R. (eds.): Scientific results from the deepened Lopra-1 borehole, Faroe Islands. Geol. Surv. Den. Greenl., 9, 123-144.

KARLSEN, D.A., NEDKVITNE, T., LARTER, S.R. & BJØRLYKKE, K. (1993): Hydrocarbon composition of authigenic inclusions: Application to elucidation of petroleum reservoir filling history.- Geochim. Cosmochim. Ac., 57, 15, 3641-3659.

LIOU, J.G., DE CAPITANI, C. & FREY, M. (1991): Zeolite equilibria in the system CaAl2Si2O8 – NaAlSi3O8 – SiO2 – H2O.- New Zeal. J. Geol. Geop. 34, 293-301.

MAGOON, L.B. (2004): Petroleum system: nature’s distribution system of oil and gas.- In: CLEVELAND, C. (ed.): Encyclopedia of Energy, Vol. 4., Elsevier (Academic Press), 823-836.

MAGYAR, I., GEARY, D.H., SÜTŐ-SZENTAI, M., LANTOS, M. & MÜLLER, P. (1999): Integrated biostratigraphic, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits.- Acta Geol. Hungarica, 42/1, 5– 31.

MAGYAR, I., JUHÁSZ, GY., SZUROMINÉ KORECZ, A. & SÜTŐNÉ SZENTAI, M. (2004): A pannóniai Tótkomlósi Mészmárga Tagozat kifejlődése és kora a Battonya-pusztaföldvári- hátság környezetében [The Tótkomlós Calcareous Marl Member of the Lake Pannon sedimentary sequence in the Battonya-Pusztaföldvár region, SE Hungary – in Hungarian with an English Abstract].- Földtani Közlöny, 134/4, 521–540.

MONTEL, F. (1993): Phase Equilibria needs for petroleum exploration and production industry.- Fluid Phase Equilibr., 84, 343-367.

NEUHOFF, P.S., WATT, W.S., BIRD, D.K. & PEDERSEN, A.K. (1997): Timing and structural relations of regional zeolite zones in basalts of the East Greenland continental margin.- Geology, 25, 803–806.

OLIVER, N.H.S. & BONS, P.D. (2001): Mechanisms of fluid-flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure.- Geofluids, 1, 137-162.

OXTOBY, N. (2002): Comments on: assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours.- Appl. Geochem., 17, 1371-1374.

PAP, S. (1983): Alsó-pannóniai bazaltvulkanizmus Balástya és Üllés-Ruzsa-Zákányszék térségében (Lower Pannonian basalt volcanism in the Balástya and Üllés-Ruzsa-Zákányszék areas – in Hungarian).- Földtani Közlöny 113/2, 163-170.

PENG, D.Y. & ROBINSON, D.B. (1976): A New Two-Constant Equation of State.- Ind. Eng. Chem. Fundam., 15, 59-64.

PIRONON, J., CANALS, M., DUBESSY, J., WALGENWITZ, F. & LAPLACE-BUILHE, C. (1998): Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy.- Eur. J. Mineral., 10, 1143-1150.

SCHUBERT, F., DIAMOND, L.W. & M. TÓTH, T. (2007): Fluid-inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary.- Chem. Geol., 244, 357-381.

SHEPERD, T.J., RANKIN, A.H. & ALDERTON, D.H.L. (1985): A Practical Guide to Fluid Inclusion Studies.- Blackie and Son Ltd., 239 p.

SOLEVIC, T., STOJANOVIC, K., JOVANCICEVIC, B., MANDIC, G., SCHWARZBAUER, J. & VITOROVIC, D. (2006): Multivariate statistical methods applied to interpretation of saturated biomarkers (Velebit oil field, SE Pannonian Basin, Serbia).- J. Serb. Chem. Soc. 71 (7), 745-769.

STASIUK, L.D. & SNOWDON, L.R. (1997): Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration.- Appl. Geochem., 12, 229-241.

SZABÓ, B., HETÉNYI, M., SCHUBERT, F., MILOTA, K. & M. TÓTH, T. (2009a): Repedezett bazalt anyagú szénhidrogén rezervoárok Üllés-Bordány térségében. [Fractured basaltic hydrocarbon reservoirs in Üllés-Bordány area – in Hungarian].- In: M. TÓTH, T. (ed.): Magmás és metamorf képződmények a Tiszai egységben, GeoLitera, 1-9.

SZABÓ, B., SCHUBERT, F. & M. TÓTH, T. (2009b): Paleofluid evolution of the fractured basalt hydrocarbon reservoir in the Üllés-Ruzsa-Bordány area, SE Hungary.- Central European Geology 52/3-4, 299-323.

SZABÓ, B., SCHUBERT, F., VOLK, H. & MANZUR, A. (2012): Fluid inclusion analysis as additional tool for comprehension of petroleum systems: A case study from the Pannonian Basin (Hungary).- AAPG Search and Discovery Article #40917, AAPG Annual Convention and Exhibition, April 22-25, 2012, Long Beach, California.

THIÉRY, R., PIRONON, J., WALGENWITZ, F. & MONTEL, F. (2002): Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils.- Mar. Petrol. Geol., 19, 847-859.

WALKER, G.P.L. (1960): Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland.- J. Geol. 68, 515-528.

WEISENBERGER, T. & SELBEKK, R.S. (2009): Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland.- Int. J. Earth Sci., 98, 985-999.

WHITNEY, D.L. & EVANS, B. W. (2010): Abbreviations for names of rock-forming minerals.- Am. Mineral., 95, 185–187.

WYSZECKI, G. & STILES, W.S. (2000): Color science: concepts and methods, quantitative data and formulae.- John Wiley and Sons, 2nd Edition, 156 p.