A mineralogical-petrographical study of evaporites from Mali Kukor, Vranjkovići and Slane Stine quarry (Upper Permian evaporites from Dalmatia, Croatia)

Main Article Content

Željko Dedić
Nikolina Ilijanić
Slobodan Miko


The evaporite deposits examined in this study are located in the central part of middle Dalmatia, Croatia. In this region, Upper Permian evaporite sediments were deposited under favourable conditions onto the Variscan basement around the northern margins of Gondwana. These sediments can be subdivided into three members, a lower evaporite unit (an anhydrite member), a middle evaporite unit (a gypsum member), and an upper unit (a clastic member), and are mainly comprised of secondary gypsum that formed via the hydration of precursor anhydrite rocks. The middle evaporite unit comprises beds of gypsum as well as early diagenetic dolomites that contain gypsum sequences, extending up to 60 m maximum thickness, and overlying clastic sequences that themselves are up to 20 m thick. These Upper Permian evaporite sediments contain horizontal, irregular, gypsum lithofacies that exhibit pronounced enterolithic and boudinage structures. The characteristics of these sediments are indicative of deposition in supratidal and sabkha settings (i.e., early diagenetic dolomites and evaporites) within a shallow epicontinental marine environment with highly varied coastlines, bays, and lagoons. The secondary gypsum seen within this Upper Permian middle evaporite unit displays alabastrine and porphyroblastic secondary textures and includes corroded anhydrite relics; associated minerals include muscovite, chlorite, potassium (K)-feldspar, quartz, and amphibole. The Upper Permian evaporite sediments discussed in this study are composed of irregular, locally brecciated secondary gypsum that probably formed as a result of multiple synsedimentary collapse of pre-existing soluble mineralsand/or synsedimentary and post-sedimentary tectonics.


Download data is not yet available.

Article Details

Original Scientific Papers


ABRANTES JR, F.R., NOGUEIRA, A.C.R. & SOARES J.L. (2016): Permian paleogeography of west-central Pangea: Reconstruction using sabkha-type gypsum-bearing deposits of Parnaíba Basin, Northern Brazil.– Sedimentary Geology, 341, 175–188. doi: 10.1016/j.sedgeo.2016.06.004

ANDREWS, I. (1992): Permian, Triassic and Jurassic lithostratigraphy in the subsurface of Jordan: natural resources authority of Jordan.– Subsurface Geol. Div., Bull. 4.

AMADI, F.O., MAJOR, R.P. & BARIA, L.R. (2010): Origin of gypsum in deep carbonate rock; primary gypsum vs. rehydrated anhydrite.– Geological Society of America, 42, p.138.

AREF, M., A.M., ABU EL–ENAIN, F.M. & ABDALLAH, G. (2003): Origin of secondary gypsum of the Miocene Abu Dabbab Evaporites, NW Red Sea coast, Egypt.– Fifth International Conference on the Geology of the Middle East, 321–330.

BUTLER, G.P. (1973): Strontium geochemistry of modern and ancient calcium sulphate minerals.– In: PURSER, B.H. (ed.): The Persian Gulf. Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer, 423–452. doi: 10.1007/978-3-642-65545-6_21

CROATIAN GEOLOGICAL SURVEY (2009): Geološka karta Republike Hrvatske 1:300.000, izrađena na temelju osnovne geološke karte M 1:100.000, područje Republike Hrvatske [Geological Map of the Republic of Croatia 1:300 000 – in Croatian].– Zagreb.

DALQAMUNI, A. (1995): Sequence stratigraphy and petroleum prospects of the Upper Triassic sediments (Abu Ruweis), North Jordan.– Unpublished MSc thesis, Yarmouk University, Jordan.

DERCOURT, J., RICOU, L.E. & VRIENLINCK, B. (1993): Atlas Tethys – Palaeoenvironmental Maps. Gauthier-Villars, Paris.

DERCOURT, J., GEATANI, M., VRIELINCK, B., BARRIER, E., BIJU-DUVAL, B., BRUNET, M.-F., CADET, J.-P., CRASQUIN, S. & SANDULESCU, M. (ed.), (2000): Atlas Peri-Tethys: Palaeogeographical Maps. CCGM/CGMW, Paris, 24 maps and explanatory notes: XX + 269 pp.

EBERL, D.D. (2003): User guide to RockJock – a program for determining quantitative mineralogy from X-ray diffraction data.– US Geol. Surc. Open File Rep., 03–78.

FORBES, B.G. (1958): Folded Permian Gypsum of Ripon Parks, Yorkshire. Proc. Yorks. Geol. Soc., 31, 351–358.

GABRIĆ, A., ŠINKOVEC, B., SAKAČ, K. & KULJAK, G. (2002): Ležišta gipsa u Republici Hrvatskoj.– Rudarsko-geološko-naftni zbornik, 14, 21–36.

GRIMANI, I., ŠIKIĆ, K. & ŠIMUNIĆ, A. (1962–1966): Osnovna geološka karta SFRJ 1:100000, list Knin L33−141 [Basic Geological Map of SFRY 1:100000, Knin sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.

GRIMANI, I., JURIŠA, M., ŠIKIĆ, K. & ŠIMUNIĆ, AN. (1975): Tumač Osnovne geološke karte SFRJ, l: 100 000, list Knin, (L-33-141), [Basic Geological Map of SFRY 1:100000, Geology of the Knin sheet – in Croatian, English Abstract].– Inst. geol. istraž. Zagreb, Savez. geol. zavod Beograd, 1–61.

HAM, W.E. (1962): Economic Geology and Petrology of Gypsum-Anhydrite Cap Rock, Sulphur Salt Dome, Louisiana.– Mem. Geol. Soc. Am., 50.

HARDIE, L.A. (1967): The gypsum-anhydrite equilibrium at one atmosphere pressure.–Am. Min., 52, 171–200.

HOLLIDAY, D.W. (1970): The petrology of secondary gypsum rocks: A review.– J. Sediment. Petrol., 40, 734–744. doi: 10.1306/74D7202C-2B21-11D7-8648000102C1865D

IRWIN, M.L. (1965): General Theory of epeiric clear water sedimentation.– American Association of Petroleum Geologist Bulletin, 49, 445–459.

IVANOVIĆ, A., SIKIRICA, V., MARKOVIĆ, S. & SAKAČ, K. (1977): Osnovna geološka karta SFRJ 1:100000, list Drniš [Basic Geological Map of SFRY 1:100000, Drniš sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.

IVANOVIĆ, A., SIKIRICA, V. & SAKAĆ, K. (1978): Tumač Osnovne geološke karte SFRJ, l : 100 000, list Drniš, (K 33-9). [Basic Geological Map of SFRY 1:100000, Geology of the Drniš sheet – in Croatian, English Abstract].– Inst geol. istraž. Zagreb, Savez. geol. zavod, Beograd.

KASPRZYK, A. (2003): Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite basin of the Carpathian Foredeep, southern Poland.– Sedimentary Geology, 158, 167–194. doi: 10.1016/S0037-0738(02)00265-8

KENDALL, A.C. (1989): Brine mixing in the Devonian of western Canada and its possible significance to regional dolomitization.– Sediment. Geol., 64, 271–285. doi: 10.1016/0037-0738(89)90053-5

KINSMAN, D.L. (1966): Gypsum and anhydrite of recent age, Trucial Coast, Persian Gulf.– Second symposium on salt, Northern Ohio Geol. Soc. Cleveland, 1, 302–326.

KIRKLAND, D.W. (2003): An explanation for the varves of the castile evaporites (upper Permian), Texas and NewMexico,USA.– Sedimentology, 50, 898–920.

KRETZ, R. (1983): Symbols of rock-forming minerals.– American Mineralogist, 68, 277–279.

KULUŠIĆ, A. & BOROJEVIĆ ŠOŠTARIĆ, S. (2014): Dinaride evaporite mélange: Diagenesis of the Kosovo polje evaporates.– Geologia Croatica, 67/1, 59–74. doi: 10.4154/gc.2014.05

LUKŠIĆ, B., CRNOGAJ, S., DEDIĆ, Ž. & JURIĆ, A., (2005): Report on gypsum reserves of the Novo Bulatovo and Pusto groblje quarries of the Kosovo exploitation field.– Unpublished report, Croatian Geological Survey, Zagreb.

MA, B., CAO, Y., ERIKSSON, K.A., JIA, Y. & WANG, Y. (2016): Burial evolution of evaporites with implications for sublacustrine fan reservoir quality: A case study from the Eocene Es4x interval, Dongying depression, Bohai Bay Basin, China.– Marine and Petroleum Geology, 76, 98 –114. doi: 10.1016/j.marpetgeo.2016.05.014

MAKLOUF, I.A. & EL-HADDAD, A.A. (2006): Depositional environments and facies of the Late Triassic Abu Ruweis Formation, Jordan.– Journal of Asian Earth Sciences, 28, 372–384. doi: 10.1016/j.jseaes.2005.10.017

MOORE, D.M. & REYNOLDS, R.C. (1997): X-ray diffraction and the identification and analysis of clay minerals.– Oxford Univ. Press, Oxford, 378 p.

MURRAY, R.C. (1964): Origin and diagenesis of gypsum and anhydrite.– Journal of Sedimentary Petrology, 34, 512–523.

OGNIBEN, L. (1957): Secondary gypsum of the Sulphur Series, Sicily, and the so-called integration.– Journal of Sedimentary Petrology, 27, 64–79. doi: 10.1306/74D7065F-2B21-11D7-8648000102C1865D

ORTI, F., PEREZ-LOPEZ, A. & SALANY, J.M. (2017): Triassic evaporites of Iberia; sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic-Earliest Jurassic.– Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 157–180. doi: 10.1016/j.palaeo.2017.01.025

PAPEŠ, J., MARINKOVIČ, R., RAIĆ, V., MAGAŠ, N. & SIKIRICA, V. (1968–1980): Osnovna geološka karta SFRJ 1:100000, list Sinj K 33−10 [Basic Geological Map of SFRY 1:100000, Sinj sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.

RAIĆ, V., PAPEŠ, J., SIKIRICA, V. & MAGAŠ, N. (1984): Tumač Osnovne geološke karte SFRJ, 1:100000, list Sinj (K 33-10). [Basic Geological Map of SFRY 1:100000, Geology of the Sinj sheet – in Croatian, English Abstract].– Geoinženjering, Institut za geologiju Sarajevo, Geološki zavod, OOUR za geologiju i paleontologiju. Izd. Savez. geol. zavod, Beograd, l–52.

SCHREIBER, B.C. & HELMAN, M.L. (2005): Criteria for distinguishing primary evaporite features from deformation features in sulfate evaporites.– Journal of Sedimentary Research, 75, 525–533. doi: 10.2110/jsr.2005.043

SHAW, A.B. (1964): Time in Stratigraphy: New York – McGraw-Hill, 365 p.

SHEARMAN, D.J. (1985): Syndepositional and later diagenetic alteration of primary gypsum to anhydrite.– The Sixth Symposium Salt, the Salt Institute, vol. 1, 44–55.

SHEARMAN, D.J., MOSSOP, G.D., DUNSMORE, H. & MARTIN, M. (1972). Origin of gypsum veins by hydraulic fracture.– Institute of Mining and Metallurgy Transactions (Section B), 81, 149–155.

STROHMENGER, C.J., Al-MANSOORI, A., Al-JEELANI, O., Al-HOSANI, I., Al-SHAMRY, A., SHEBL, H., Al-MEHSIN, K. & Al-BAKER, S. (2008): The arid shallow subtidal to supratidal environment; a case study from the Abu Dhabi Sabkha (United Arab Emirates). Abstracts: Annual Meeting – American Association of Petroleum Geologists, 2008.

ŠUŠNJARA, A., SAKAČ, K., JELEN, B. & GABRIĆ, A. (1992): Upper Permian evaporites and associated rocks of Dalmatia and borderline area of Lika and Bosnia.–Geologia Croatica, 45, 95–114.

TAJ, R.J.A. (2012): Lower Miocene Coastal Lagoon Carbonates and Evaporites of Rabigh Area, Red Sea Coast, Saudi Arabia. Journal of King Abdulaziz University: Marine Sciences, 23, 131–164. doi: 10.4197/Mar.23-2.8

TESTA, G. & LUGLI, S. (2000): Gypsum anhydrite transformation in Messinian evaporites of central Tuscany (Italy).– Sediment. Geol., 249–268. doi: 10.1016/S0037-0738(99)00118-9

TIŠLJAR, J. (1992): Origin and depositional environments of the evaporitic and carbonate complex (Upper Permian) from the central part of the Dinarides (Southern Croatia and Westen Bosnia).– Geologia Croatica, 45, 115–126.

TIŠLJAR, J., VLAHOVIĆ, I., VELIĆ, J. & SOKAČ, B. (1992): Carbonate Platform Megafacies of the Jurassic and Cretaceous Deposits of the Karst Dinarides.– Geologia Croatica, 55, 139–170.

VELIĆ, I., VLAHOVIĆ, I. & MATIČEC, D. (2002): Depositional sequences and paleogeography of the Adriatic Carbonate Platform.– Mem. Soc. Geol. Ital., 57, 141–151.

VLAHOVIĆ, I., TIŠLJAR, J., VELIĆ, I. & MATIČEC, D. (2005): Evolution of the Adriatic Carbonate Platform: paleogeography, main events and depositional dynamics.− Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 333–360. doi: 10.1016/j.palaeo.2005.01.011

WARREN, J. (1999): Evaporites: their evolution and economics.– Blackwell Science, Oxford, UK, 438 p.

WARREN, J.K. (2006): Evaporites: sediments, resources and hydrocarbons.– Springer Berlin Heidelberg New York, p. 1041. doi: 10.1007/3-540-32344-9

WATSON, A. (1988): Desert gypsum curst as paleoenviroment indicators: micropetrographic study from southern Tunisia and the central Namib Desert.– J. Arid Environ., 15, 19–42.

WEST, I.M. (1964): Evaporite diagenesis in the Lower Purbeck beds of Dorset.– Geol. Soc. Yorkshire Proc., 34, 315–330. doi: 10.1144/pygs.34.3.315

WEST, I.M. (1965): Macrocell structure and enterlolithic facies in the Visean of Ireland.– Geol. Soc. Yorkshire Proc., 35, 47–58.

WETZEL, A., WEISSERT, H., SCHAUB, M., VOEGLIN, A.R. & FÖLLMI, K. (2013): Sea-water circulation on an oolite-dominated carbonate system in an epeiric sea (Middle Jurassic, Switzerland).– Sedimentology, 60, 19–35. doi: 10.1111/sed.12007

YESILOVA, P.G. & HELVACI, S. (2013): Diagenesis and paleogeographic development of Oligocene evaporites of the Germik Formation (Kurtalan, SW Siirt), Turkey.– Yerbilimleri, 34, 1–22.

ZAKI, R., WALI, A. & MOSA, M. (2011): Sedimentological and hydrochemical spectrum of recent continental sabkha and signs of its capabilities to generate hydrocarbons: a case study in northwest El Fashn area, Western Desert, Egypt.– Carbonates & Evaporites, 26, 273–286. doi: 10.1007/s13146-011-0062-5