Study of Aqueous and Non-Aqueous Phase Liquid in Fractured Double-Porosity Soil Using Digital Image Processing

Main Article Content

Loke Kok Foong
Norhan Abd Rahman
Ramli Nazir
Roland W. Lewis


The leakage and spillage of non-aqueous phase liquids (NAPLs) and aqueous phase liquids (APLs) contribute to groundwater contamination, resulting in groundwater pollution and rendering the quality of groundwater unsafe for drinking and agriculture. Ensuring the availability and sustainable management of water and sanitation for all was the goal and target of the 2030 United Nations agenda for sustainable development, consisting of a plan of action for the population, the planet and general prosperity. This paper is intended to investigate the aqueous and non-aqueous phase liquid migrations in a deformable double-porosity soil, which has become important for both sustainable groundwater use and the comprehensive understanding of the behaviour of liquid migration into groundwater. A modelling experiment was conducted in an attempt to study the pattern and behaviour of aqueous and non-aqueous phase liquid migration in fractured double-porosity soil using a digital image processing technique. The results of the experiments show that the flow of the APL and NAPL migration was not uniformly downward. Faster migration occurred where the soil surface was cracked compared to other locations where the soil surface was not cracked, even when liquids such as toluene were not used. It was concluded that the factors that significantly influenced the APL and NAPL migration were the structure of the soil sample, fracture pattern of the soil sample, physical interaction i.e. bonding between the liquid and soil sample, and the capillary pressure of the fluid. This study indicates that digital image analysis can provide detailed information to help researchers better understand and be able to simulate the pattern and characteristics of liquid migration that have an influence on groundwater resources.


Download data is not yet available.

Article Details

Original Scientific Papers
Author Biographies

Loke Kok Foong, PhD Candidate Universiti Teknologi Malaysia

Faculty of Civil Engineering,

Universiti Teknologi Malaysia,

Johor, Malaysia 

Norhan Abd Rahman, Associate Profesor Dr. Norhan Abd Rahman Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia.

Centre of Tropical Geoengineering,

Faculty of Civil Engineering,

Universiti Teknologi Malaysia,

81310, Johor, Malaysia 

Ramli Nazir, Professor Ir. Dr. Ramli Nazir Centre of Tropical Geoengineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia.

Centre of Tropical Geoengineering,

Faculty of Civil Engineering,

Universiti Teknologi Malaysia,

81310, Johor, Malaysia 

Roland W. Lewis, Professor Emeritus Dr. Roland W Lewis School of Engineering, University of Wales Swansea, United Kingdom.

School of Engineering,

University of Wales Swansea,

Swansea, W. Glam, SA2 8PP,

United Kingdom.


ALAZAIZA, M.Y.D., NGIEN, S.K., BOB, M.M., KAMARUDDIN, S.A. & ISHAK, W.M.F. (2017): Influence of macro-pores on DNAPL migration in double-porosity soil using light transmission visualization method.– Transport in Porous Media, 117, 103–123.

HARRIS, K.R. (2001): Reference correlation for the viscosity of liquid toluene from 213 to 373k at pressures to 250Mpa.– International Journal of Thermophysics, 22/3, 789–799. doi:10.1023/A:1010774932124

BAGHERIEH, A.R., KHALILI, N., HABIBAGAHI, G. & GHAHRAMANI, A. (2009): Drying response and effective stress in a double porosity aggregated soil.– Engineering Geology, 105/1–2, 44–50. doi:10.1016/j.enggeo.2008.12.009

BOB, M.M., BROOKS, M.C., MRAVIK, S.C. & WOOD, A.L. (2008): A modified light transmission visualization method for DNAPL saturation measurements in 2-D models.– Advance Water Resource, 31, 727–742. doi:10.1016/j.advwatres.2008.01.016

BRIDGE, J.W., BANWART, S.A. & HEATHWAITE, A.L. (2006): Non-invasive quantitative measurement of colloid transport in mesoscale porous media using image lapse fluorescene imaging. – Environment Science Technology, 37, 1859–1868. doi:10.1021/es060373l

CARMINATI, A., KAESTNER, A., LEHMAN, P. & FLÜHLER, H. (2008): Unsaturated water flow across soil aggregate contacts.– Advances in Water Resources, 31/9, 1221–1232. doi:10.1016/j.advwatres.2008.01.008

CNUDDE, V. & BOONE, M. (2013): High-resolution X-ray computed tomography in geosciences : A review of the current technology and applications.– Earth Science Reviews, 123, 1–17. doi:10.1016/j.earscirev.2013.04.003

EL-ZEIN, A., CARTER, J.P. & AIREY, D.W. (2006): Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach.– International Journal for Numerical and Analytical Methods in Geomechanics, 30/7, 577–597. doi:10.1002/nag.491

testing protocols for determnining the seismic performance characteristics of structural and nonstructural components.– Applied Technology Council, Redwood City, California.

FREDLUND, D.G., HOUSTON, S.L., NGUYEN, Q. & FREDLUND, M.D. (2010): Moisture movement through cracked clay soil profiles.– Geotechnical and Geological Engineering, 28/6, 865–888. doi:10.1007/s10706-010-9349-x

HARITH, N.S.H., ADNAN, A., & SHOUSHTARI, A.V. (2017): Deaggregation of probabilistic ground motions in the Kota Kinabalu and Lahad Datu Towns of Sabah, Malaysia.– MATEC Web of Conferences. Seoul, South Korea, 09001, 2–11. doi:10.1051/matecconf/201713809001

JOSEPH, K., MORDECHAI, S. & WILLIAM, A.W. (1978): Viscosity of liquid water in the range 8oC to 150oC.– Journal Phys. Chem. Ref. Data, 7/3, 941–948. doi:10.1063/1.555581

KECHAVARZI, C., SOGA, K., ILLANGASEKARE, T.H. & NIKOLOPOULOS, P. (2008): Laboratory study of immiscible contaminant flow in unsaturated layered sands.– Vadose Zone Journal, 1–9. Doi: 10.2136/vzj2006.0177

KRISNANTO, S., RAHARDJO, H., FREDLUND, D.G. & LEONG, E.C. (2014): Mapping of cracked soils and lateral water flow characteristics through a network of cracks.– Engineering Geology, 172, 12–25. doi:10.1016/j.enggeo.2014.01.002

LAKELAND, D.L., RECHENMACHER, A. & GHANEM, R. (2014): Towards a complete model of soil liquefaction: the importance of fluid flow and grain motion.– Proceedings of the Royal Society A – Mathematical, Physical and Engineering Sciences, London A470:20130453. doi:10.1098/rspa.2013.0453

LEWANDOWSKA, J., SZYMKIEWICZ, A., GORCZEWSKA, W. & VAUCLIN, M. (2005): Infiltration in a double-porosity medium: Experiments and comparison with a theoretical model.– Water Resources Research, 41/2, W02022. doi:10.1029/2004WR003504

LI, X. & Zhang, L.M. (2009): Characterization of dual-structure pore-size distribution of soil. – Canadian Geotechnical Journal, 46, 129–141. doi: 10.1139/T08-110

LOKE, K.F., RAHMAN, N.A. & NAZIR, R. (2017): Experimental study on unsaturated double-porosity soil phenomena under vibration effect.– Jurnal Teknologi, 79/4, 65–72. doi:10.11113/jt.v79.9976

LOKE, K.F., RAHMAN, N.A. & RAMLI, M.Z. (2016): A laboratory study of vibration effect for deformable double-porosity soil with different moisture content.– Malaysian Journal of Civil Engineering, 28, SI/3, 207–222.

LUCIANO, A., VIOTTI, P. & PAPINI, M.P. (2010): Laboratory investigation of DNAPL migration in porous media.– Journal of Hazardous Materials, 176, 1006–1017. doi:10.1016/j.jhazmat.2009.11.141

MAJA, I., NEDA, V., SANDRA, D.B.B., VLADIMIR, B. & IVAN, S. (2015): Mineralogy, surface properties and electrokinetic behaviour of kaolin clays derived from naturally occurring pegmatite and granite deposits.– Geologia Croatica, 68/2, 139–145. doi: 10.4154/gc.2015.09

MASCIOPINTO, C., BENEDINI, M., TROISI, S. & STRAFACE, S. (2001): Conceptual models and field test results in porous and fractured media in groundwater pollution control.– WIT Press, Southampton, UK.

NGIEN, S.K., CHIN, P.Q., HASAN, M., ALI, M.I., TADZA, M.Y.M. & RAHMAN, N.A. (2016): Image analysis of non-aqueous phase liquid migration in aggregated kaolin.– ARPN Journal of Engineering and Applied Sciences, 11/10, 6393–6398.

NGIEN, S.K., RAHMAN, N.A., AHMAD, K. & LEWIS, R.W. (2012): A review of experimental studies on double-porosity soils.– Scientific Research and Essays, 7/38, 3243–3250. doi:10.5897/SRE11.2131

NGIEN, S.K., RAHMAN, N.A., BOB, M.M., AHMAD, K., SA’ARI, R., & LEWIS, R.W. (2011): Observation of light non-aqueous phase liquid migration in aggregated soil using image analysis.– Transport in Porous Media, 92/1, 83–100. doi: 10.1007/s11242-011-9892-9s

PENG, Z., DUWIG, C., DELMAS, P., GAUDET, J.P., STROZZI, A.G., CHARRIER, P. & DENIS, H. (2015): Visualization and characterization of heterogeneous water flow in double-porosity media by means of X-ray computed tomography.– Transport in Porous Media, 110, 543–564. doi:10.1007/s11242-015-0572-z

SA`ARI, R., RAHMAN, N.A., LATIF ABDUL, N.H., YUSOF, Z.M., NGIEN, S.K., KAMARUDDIN, S.A., MUSTAFFAR, M. & HEZMI, M.A. (2015): Application of digital image processing technique in monitoring LNAPL migration in double porosity soil column.– Jurnal Teknologi, 3/72, 23–29. doi:10.11113/jt.v72.4018

SEONG, K.P. (2005): Sustainable mining of the clay resources in peninsular Malaysia.– Geological Society of Malaysia Bulletin, 51, 1–5.

SITTHIPHAT, E.A. & SIAM, Y. (2016): Investigation of average optical density and degree of liquids saturation in sand by image analysis method.– KKU Eng. Journal, 43/S1, 147–151. doi:10.14456/kkuenj.2016.44

YOUSEF, H.N., NASSIR ,S.N.A.A., MUHAMMAD, K.J., HOSSAM, A.K., HABES, G., MAHMOUD, M.E.W., AWNI, B. & TAISSER, Z. (2015): Multivariate statistical analysis of urban soil contamination by heavy metals at selected industrial locations in the greater Toronto area, Canada.– Geologia Croatica, 68/2, 147–159. doi:10.4154/gc.2015.10

ZHENG, F., GAO, Y., SUN, Y., SHI, X., XU, H. & WU, J. (2015): Influence of flow velocity and spatial heterogeneity on DNAPL migration in porous media: Insights from laboratory experiments and numerical modelling.– Hydrogeology Journal, 23, 1703–1718. doi:10.1007/s10040-015-1314-6