The first record of ultramafic cumulates from the Mt. Kalnik ophiolite mélange in the SW part of the Zagorje-Mid-Transdanubian Zone (NW Croatia): mineralogy, petrology, geochemistry and tectono-magmatic affinity

Main Article Content

Damir Slovenec
Branimir Šegvić

Abstract

Ultramafic cumulate rocks represent the rarest allochthonous fragments of the Mesozoic oceanic lithosphere observed today in the Upper Jurassic to Lower Cretaceous mélange of Mt. Kalnik, located in the SW part of the Zagorje‒Mid-Transdanubian Zone (ZMTDZ). Poikilitic heteroadcumulate ultramafic rocks of Mt. Kalnik are represented by amphibole lherzolites/ harzburgite sand plagioclase lherzolites. Both were formed by in-situ processes within a magma chamber following the general crystallization sequence of: Al-chromite → Mg-rich olivine → enstatite ± augite→ Ca-amphibole (pargasite ± edenite ± magnesiohornblende) → Ca-plagioclase (An82.6-87.4). Cumulate minerals are spinel and olivine as well as orthopyroxene and clinopyroxene which areusually enclosed in intercumulate phases such as amphibole and/or plagioclase that render aninterstitial mesostasis. Rocks’ textural characteristics, mineral crystallization order and their phase chemistry are all suggestive of low-pressure sub-solidus crystallization in an open system. The low Ti content in augite and scant HFSE abundances suggest the studied rocks may have formed from a depleted mantle source. In addition to the medium to high degree of partial melting of the source, the parental process that gave rise to the Mt. Kalnik ultramafic cumulates also included a low degree of fractional crystallization. The segregation of oxidized Al-chromite and oikocrysts of pargasite and edenite in an early crystallization stage illustrates the formation of a cumulate sequence from volatile-rich magmas. These magmas usually have a high oxidation potential and are exclusively found in intra-oceanic subduction zones, predominantly in island arcs. The overall whole-rock geochemistry [e.g. (Nb/La)n = 0.25-0.34; (Ti/Gd)n = 0.49-0.89;(Th/Nb)n = 5.29-8.63; (La/Lu)cn = 0.57-0.68] together with a record of Ca-rich plagioclase (up toAn87.4) and low Ti clinopyroxene (≤0.54 wt%) corroborate the supra-subduction tholeiitic nature of the magma source. Ultramafic cumulates from the ophiolitic mélange of Mts. Kalnik and Medvednica show common genetic features and geotectonic provenance. Comparison with analogous ultramafic lithotypes of the north-eastern segment of the ZMTDZ (the Szarvaskö Complex,Hungary), the ultramafic cumulates of Mts. Kalnik and Medvednica portray some subtle differences that may indicate their distinctive geotectonic provenance. Mts. Kalnik and Medvednica ultramafic cumulates represent the vestiges of a single Upper Jurassic intra-oceanic arc system formed in the western branch of the Meliata-Maliak segment of the Neotethyan oceanic realm.

Article Details

Section
Original Scientific Papers

References

AIGNER-TORRES, M. & KOLLER, F. (1999): Nature of the magma source of the Szarvaskö complex (NE Hungary): petrological and geochemical constraints.– Ofioliti, 24, 1–12.

AOKI, K. & KUSHIRO, I. (1968): Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel.– Contr. Mineral. Petrol., 21, 743–749. doi: 10.1007/BF00399694

ARISKIN, A.A. & YAROSHEVSKY, A.A. (2006): Crystallization differentiation of intrusive magmatic melt: Development of a convection- accumulation model.– Geochemistry International, 44, 72–93.
doi: 10.1134/S0016702906010083

BABIĆ, LJ., HOCHULI, P.A. & ZUPANIČ, J. (2002): The Jurassic ophiolitic mélange in the NE Dinarides: Dating, internal structure and geotectonic implications.– Eclogae Geologicae Helvetiae, 95, 263–257.

BAGCI, U. (2013): The geochemistry and petrology of the ophiolitic rocks from the Kahramanmaras region southern Turkey.– Turkish J. Earth Sci., 22, 536–562. doi: 10.3906/year-1203-1

BALLA, Z. (1984): The North Hungarian Mesozoic mafics and ultramafics.– Acta Geol. Hung., 27, 341–357.

BALLA, Z., HOVORKA, D., KUZMIN, M. & VINOGRADOV, V. (1983): Mesozoic ophiolites of the Bükk Mountains (North Hungary).– Ofioliti, 8, 5–45.

BALLANTYNE, P. (1992): Petrology and geochemistry of the plutonic rocks of the Halmahera ophiolite, eastern Indonesia, an analogue of modern oceanic forearcs.– In: L.M. PARSON, B.J. MURTON & P. BROWNING (eds.): Ophiolites and their modern oceanic analogues.– Geol. Soc. Spec. Publ., 60, 179–202. doi: 10.1144/GSL.SP.1992.060.01.11

BECCALUVA, L., MACCIOTTA, G., PICCARDO, G.B. & ZEDA, O. (1989): Clinopyroxene composition of ophiolite basalts as petrogenetic indicator.– Chemical Geology, 77, 165–182. doi: 10.1016/0009-2541(89)90073-9

BORTOLOTTI, V. & PRINCIPI, G. (2005): Tethyan ophiolites and Pangea break-up.– Island Arc, 14, 442–470.
doi: 10.1111/j.1440-1738.2005.00478.x

BORTOLOTTI, V., CHIARI, M., MARRONI, M., PANDOLFI, L., PRINCIPI, G., SACCANI, E. (2013): The geodynamic evolution of the ophiolites from Albania and Greece, Dinaric-Hellenic Belt: one, two, or more oceanic basins?– Int. J. Earth Sci., 102, 783–811.
doi: 10.1007/s00531-012-0835-7

BREAD, J.S. (1986): Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis.– Geology, 14, 848–851.
doi: 10.1130/0091-7613(1986)14%3C848:CMOACG%3E2.0.CO;2

CAMPBELL, I.H. (1978): Some problems with the cumulus theory.– Lithos, 11, 311–323. doi: 10.1016/0024-4937(78)90038-5

CAMPBELL, I.H. (1987): Distribution of orthocumulate textures in the imberlana Intrusion.– J. Geol., 95, 35–54.

COLEMAN, R.G. (1977): Ophiolites. Springer-Verlag, Berlin, 229 p.
doi: 10.1007/978-3-642-66673-5

COLEMAN, R.G. (1981): Tectonic setting for ophiolite obduction in Oman.– J. Geophys. Res., 86, 2497–2508.
doi: 10.1029/JB086iB04p02497

CONRAD, W.K. & KAY, R.W. (1984): Ultramafic and mafic inclusions from Adak Islands: Crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc.– J. Petrol., 25, 88–125. doi: 10.1093/petrology/25.1.88

CRNKOVIĆ, B., BABIĆ, V. & TOMAŠIĆ, I. (1974): The gabbro of Hruškovec near Ljubeščica on mount Kalnik (Northern Croatia).– Geološki vjesnik, 27, 153–171, (in Croatian with English summary).

DAVIDSON, J., TURNER, S., HANDLEY, H., MACPHERSON, C. & DOSSETO, A., (2007): Amphibole ‘‘sponge’’ in arc crust?– Geology, 35, 787–790.

DEBARI, S.M. & COLEMAN, R.G. (1989): Examination of deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska.– J. Geophys. Res., 94, 4373–4391.
doi: 10.1029/JB094iB04p04373

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1992): An introduction to the Rock forming Minerals, 2nd ed., Harlow, Longman, 696 p.

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1997): Rock-Forming Minerals; Vol. 1b. Alden Press, Osney, Mead, Oxford, 629 p.

DILEK, Y. (2003): Ophiolite pulses, mantle plumes and orogeny.– Geol. Soc. Lond. Spec. Publ., 218, 9–19. doi: 10.1144/GSL.SP.2003.218.01.02

DILEK, Y. & FURNES, H. (2011): Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere.– Geol. Soc. Am. Bull., 123, 387–411.

DILEK, Y. & FURNES, H. (2014): Ophiolites and their origins.– Elements, 10, 93–100. doi: 10.2113/gselements.10.2.93

DOWNES, H., PANTÓ, G.Y., ÁRKAI, P. & THIRLWALL, M.F. (1990): Petrology and geochemistry of Mesozoic igneous rock, Bükk Mountains.– Lithos, 24, 201–215. doi: 10.1016/0024-4937(90)90032-V

ENGLAND, R.N. & DAVIES, H.L. (1973): Mineralogy of ultramafic cumulates and tectonites from eastern Papua.– Earth Planet. Lett., 17, 416–425. doi: 10.1016/0012-821X(73)90210-0

FARYAD, S.W., SPIŠIAK, J., HORVÁT, P., HOVORKA, D., DIANIŠKA, I. & JÓZSA, S. (2005): Petrological and geochemical features of the Meliata mafic rocks from the sutured Triassic oceanic basin, Western Carpathians.– Ofioliti, 30, 27–35.

FESTA, A., PINI, G.A., DILEK, Y. & CODEGONE, J. (2010): Mélanges and mélangeforming processes: a historical overview and new concepts.– In: DILEK, Y. (ed.): Alpine Concept in Geology. International Geology Review, 52, 1040–1105.

FRANZ, L. & WIRTH, R. (2000): Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere.– Contrib. Mineral. Petrol., 140, 283–295.
doi: 10.1007/s004100000188

HAAS, J. & KOVÁCS, S. (2001): The Dinaridic-Alpine connection – as seen from Hungary.– Acta Geol. Hung., 44, 345–362.

HAAS, J., MIOČ, P., PAMIĆ, J., TOMLJENOVIĆ, B., ÁRKAI, P., BÉRCZI-MAKK, A., KOROKNAI, B., KOVÁCS, S. & R-FELGENHAUER, E. (2000): Complex structural pattern of the Alpine-Dinaridic Pannonian triple junction.– Int. J. Earth Sci., 89, 377–389. doi: 10.1007/s005310000093

HALAMIĆ, J. (1998): Lithostratigraphy of Jurassic and Cretaceous sediments with ophiolites from the Mts. Medvednica, Kalnik and Ivanščica.– PhD Thesis, University of Zagreb, Zagreb, 188 p. (in Croatian with English summary).

HARANGI, SZ., SZABÓ, CS., JÓZSA, S., SZOLDÁN, ZS., ÁRVA-SÓS, E., BALLA, M. & KUBOVICS, I. (1996): Mesozoic igneous suites in Hungary: Implications for genesis and tectonic setting in the northwestern part of Tethys.– Int. Geol. Rev., 38, 336–360.
doi: 10.1080/00206819709465339

HAWTHORNE, F.C., OBERTI, R., HARLOW, G.E., MARESCH, W.V., MARTIN, R.F., SCHUMACHER, J.C. & WELCH, M.D. (2012): Nomenclature of the amphibole supergroup.– American Mineralogist, 9, 2031–2048.
doi: 10.2138/am.2012.4276

HOECK, V., IONESCU, C. & KOLLER, F. (2006): Mesozoic ophiolites in the Dinarides and the Carpathians: a review.– Acta Mineralogica-Petrographica, Abstract Series, 5, 39–41.

HOLNESS, M.B. & WINPENNY, B. (2009): The Unit 12 allivalite, Eastern Layered Intrusion, Isle of Rum: a textural and geochemical study of an open-system magma chamber.– Geol. Mag., 146, 437–450. doi:10.1017/S0016756808005797

HOVORKA, D., JAROŠ, J., KRATOCHVÍL, M., REICHWALDER, P., ROJKOVIČ, I., SPIŠIAK, J. & TURANOVÁ, L. (1985): Ultramafic rocks of the Western Carpathians, Czechoslovakia.– Geol. Inst. Dionýz Štúr, Bratislava, 1–258.

HUOT, F. & MAURY, R.C. (2002): The Round Mountain serpentinite mélange, northern Coast Ranges of California: An association of backarc and arc-related tectonic units.– GSA Bull., 114, 109–123.

ILBELY, N. (2008): Geochemical comparison of Ultramafic-mafic cumulate rocks from the Central Anatolian ophiolites, Turkey.– Int. Geol. Rev., 50, 810–825. doi: 10.2747/0020-6814.50.9.810

IRVINE, T.N. (1982): Terminology for layered intrusions.– J. Petrol., 23, 127–162. doi: 10.1093/petrology/23.2.127-a

IVAN, P. (2002): Relicts of the Meliata ocean crust: geodynamic implications of mineralogical, petrological and geochemical proxies.– Geol. Carpathica, 53, 245–256.

JAQUES, A. & GREEN, D.H. (1980): Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts.– Contrib. Mineral. Petrol., 73, 287–310. doi: 10.1007/BF00381447

JÓZSA, S. (1999): Petrological and geochemical study of the Darnó Hill ocean floor magmatic rocks.– PhD Thesis, ELTE, Budapest, 173 p. (in Hungarian with English summary).

KAMENETSKY, V.S., CRAWFORD, A.J. & MEFFRE, S. (2001): Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks.– J. Petrology, 42, 655–671. doi: 10.1093/petrology/42.4.655

KEPEZHINSKAS, P.K., TAYLOR, R.N. & TANAKA, H. (1993): Geochemistry of plutonic spinels from the North Kamchatka Arc: comparison with spinels from other tectonic settings.– Mineral. Mag., 57, 575–589.
doi: 10.1180/minmag.1993.057.389.02

KISS, G., MOLNÁR, F., PALINKAŠ, L., KOVÁCS, S. & HRVATOVIĆ, H. (2012): Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–rock interaction, and geochemical characteristics.– Int. J. Earth Sci., 101, 1503–1521.

KOCAK, K., ISIK, F., ARSLAN, M. & ZEDEF, V. (2005): Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksarav and Kavseri regions, central Anatolian crystalline complex, Turkey.– J. Asian Earth Sci., 25, 883–891.

KOEPKE, J. & SEIDEL, E. (2004): Hornblendites within ophiolites of Crete, Greece: evidence for amphibole-rich cumulates derived from an iron-rich tholeiitic melt.– Ofioliti, 29, 159–175.

KRAWCZYNSKI, M., GROVE, T. & BEHRENS, H. (2012): Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity.– Contrib. Mineral. Petrol., 164, 317–339.
doi: 10.1007/s00410-012-0740-x

KUBOVICS, I. (1984): On the petrogenesis of the north Hungarian basic-ultrabasic magmatic rocks.– Acta Geol. Hung., 27, 163–189.

KUBOVICS, I. & BILIK, I. (1984): Comparative investigation of the Hungarian Mesozoic basic-ultrabasic and some ophiolitic magmatic rocks in the Alp-Carpathian chain.– Acta Geol. Hung., 27, 321–339.

LAROCQUE, J. & CANIL, D. (2010): The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada.– Contrib. Mineral. Petrol., 159, 475–492.
doi: 10.1007/s00410-009-0436-z

LARREA, P., GALÉ, C., UBIDE, T., WIDOM, E., LAGO, M. & FRANÇA, Z. (2014): Magmatic evolution of Graciosa (Azores, Portugal).– J. Petrol., 55, 2125–2154. doi:10.1093/petrology/egu052

LATYPOV, R. (2009): Testing the validity of the petrological hypothesis “No phenocrysts, no post-emplacement differentiation”.– J. Petrol., 50, 1047–1069. doi:10.1093/petrology/egp031

LEAKE, B.E. et al. (1997): Nomenclature of amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names.– Canadian Mineralogist, 35, 219–246.

LEBLANC, M., DUPUY, C. & MERLET, C. (1984): Nickel content of olivine as a discriminatory factor between tectonite and cumulate peridotite in ophiolites.– Sci. Géol. Bull., 37, 131–135. doi: 10.3406/sgeol.1984.1659

LINDSLEY, D.H. (1983): Pyroxene thermometry.– Amer. Mineralogist, 68, 477–493.

LIU, C.Z., WU, F.Y., WILDE, S.A., YU, L.J. & LI, J.L. (2010): Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism.– Lithos, 114, 413–422.
doi: 10.1016/j.lithos.2009.10.008

LUGOVIĆ, B., ALTHERR, R., RACZEK, I., HOFMANN, A.W. & MAJER, V. (1991): Geochemistry of peridotites and mafic igneous rocks from the Central Dinaric Ophiolite Belt, Yugoslavia.– Contrib. Mineral. Petrol., 106, 201–216. doi: 10.1007/BF00306434

LUGOVIĆ, B., SLOVENEC, DA., HALAMIĆ, J. & ALTHERR, R. (2007): Petrology, geochemistry and geotectonic affinity of the Mesozoic ultramafic rocks from the southwesternmost Mid-Transdanubian Zone in Croatia.– Geol. Carpathica, 58, 511–530.

LUGOVIĆ, B., SLOVENEC, D., SCHUSTER, R., SCHWARZ, W.H. & HORVAT, M. (2015): Petrology, geochemistry and tectono-magmatic affinity of gabbroic olistoliths from the ophiolite mélange in the NW Dinaric-Vardar ophiolite zone (Mts. Kalnik and Ivanščica, North Croatia).– Geol. Croatica, 68/1, 25–49. doi: 10.4154/GC.2015.03

MAJER, V. (1993): Ophiolite complex of the Banija and Pokuplje region in Croatia and Mt. Pastirevo in Nortwestern Bosnia.– Acta Geol. HAZU, 23, 39–84 (in Croatian with English summary)

MENZIES, M. (1973): Mineralogy and partial melt textures within an ultramafic-mafic body, Greece.– Contrib. Mineral. Petrol., 42, 273–285. doi: 10.1007/BF00372606

MEYER, P.S., DICK, J.B. & THOMPSON, G. (1989): Cumulate gabbros from the Southwest Indian Ridge, 54oS-7o16´ E: implications for magmatic processes at a slow spreading ridge.– Contrib. Mineral. Petrol., 103, 44–63.

MOORES, E.M. & JACKSON, E.D. (1974): Ophiolites and oceanic crust.– Nature, 250, 136–139. doi: 10.1038/250136a0

MORIMOTO, N. (1988): Nomenclature of pyroxenes.– Schweiz. Mineral. Petrogr. Mitteil., 68, 95–111.

NIMIS, P. (1999): Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems.– Contrib. Mineral. Petrol., 135, 62–74.
doi: 10.1007/s004100050498

NIMIS, P. & ULMER, P. (1998): Clinopyroxene geobarometry of magmatic rocks part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems.– Contrib. Mineral. Petrol., 133, 122–135.

PAMIĆ, J. (1997): The northwesternmost outcrops of the Dinaridic ophiolites: a case study of the Mt. Kalnik (North Croatia).– Acta Geol. Hung., 40, 37–56.

PAMIĆ, J. (2000): The Periadriatic-Sava-Vardar Suture Zone.– In: I. VLAHOVIĆ & R. BIONDIĆ (eds.): 2nd Croatian Geological Congress Proceedings. Institute of Geology, Zagreb, 333–337 (in Croatian with English summary)

PAMIĆ, J. (2002): The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar ocean.– Eclogae Geologicae Helvetiae, 95, 99–113.

PAMIĆ, J. & DESMONS, J. (1989): A complete ophiolite sequence in Rzav, area of Zlatibor and Varda ultramafic massifs, the Dinaride ophiolite zone.– Ofioliti, 14, 13–32.

PAMIĆ, J. & TOMLJENOVIĆ, B. (1998): Basic geological data on the Croatian part of the Mid-Transdanubian Zone as exemplified by Mt. Medvednica located along the Zagreb-Zemplen Fault Zone.– Acta Geol. Hung., 41, 389–400.

PAMIĆ, J., TOMLJENOVIĆ, B. & BALEN, D. (2002): Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview.– Lithos, 65, 113–142.

PARLAK, O., DELALOYE, M. & BÍNGÖL, E. (1996): Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersín ophiolite (southern Turkey).– Geol. Rundsch., 85, 647–661.

PARLAK, O., HÖCK, V. & DELALOYE, M. (2002): The suprasubduction zone Poznati- Kersanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates.– Lithos, 65, 205–224.

PEARCE, J.A. (2003): Subduction zone ophiolites. In Dilek, Y., and Newcomb, S., eds. Ophiolite concept and the evolution of geological thought.– Geol. Soc. Am. Spec. Pap., 373, 269–294.

PEARCE, J.A. (2008): Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust.– Lithos, 100, 14–48. doi:10.1016/j.lithos.2007.06.016

PEARCE, J.A. & NORRY, M.J. (1979): Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks.– Contrib. Mineral. Petrol., 69, 33–47. doi: 10.1007/BF00375192

PYTHON, M. & CEULENEER, G. (2003): Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite.– Geochem., Geophys., Geosyst., 4., 1–34.
doi: 10.1029/2002GC000354

POLJAK, J. (1942): A contribution to the knowledge of geology of the Mt. Kalnik.– Vjestnik Hrvatskog Državnog Geoložkog Zavoda i Hrvatskog Državnog Geoložkog Muzeja, 1, 53–92 (in Croatian with German summary)

POUCHOU, J.L. & PICHOIR, F. (1984): A new model for quantitative analyses. I. Application to the analysis of homogeneous samples.– La Recherche Aérospatiale, 3, 13–38.

POUCHOU, J.L. & PICHOIR, F. (1985): “PAP” (φ-ρ-Z) correction procedure for improved quantitative microanalysis.– In: ARMSTRONG, J.T. (ed.): Microbeam Analysis, San Francisco, California, USA: San Francisco Press, 104–106.

RAYMOND, L.A. (1984): Classification of melanges. In: L.A. RAYMOND (ed.): Mélanges: Their nature, origin, and significance.– Geol. Soc. of Amer. Spec. Paper, 198, 7–20. doi: 10.1130/SPE198-p7

ROSS, K. & ELTHON, D. (1997): Cumulus and postcumulus crystallization in the ocean crust: major- and trace-element geochemistry of leg 153 gabbroic rocks.– In: KARSON, J.A., CANNAT, M., MILLET, D.J. & ELTHON, D. (eds.): Proceedings of the Ocean Drilling Program, Scientific Results, vol. 153. Ocean Drilling Program, College Station, Texas, 333–350.

SACCANI, E. & TASSINARI, R. (2015): The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry.– Ofioliti, 40, 37–56.

SACCANI, E., DILEK, Y. & PHOTIADES, A. (2017): Time-Progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A Case study of the Albanide-Hellenide ophiolites.– Lithosphere. doi:10.1130/L602.1

SAUNDERS, A.D., TARNEY, J., MARSH, N.G. & WOOD, D.A. (1980): Ophiolites as ocean crust or marginal basin crust: A geochemical approach.– In: PANAYIOTOU, J. (ed.): Ophiolites, Proc. int. Ophiolite Conf. Nicosia, Cyprus, 193–204.

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine- Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss J. Geosci., 101, 139–183.
doi: 10.1007/s00015-008-1247-3

SERRI, G. & SAITTA, M. (1980): Fractionation trends of gabbroic complexes from high-Ti and low-Ti ophiolites and from the crust of major oceanic basins: a comparison.– Ofioliti, 5, 241–264.

SERRI, S. (1981): The petrochemistry of ophiolitic gabbro-complexes: A key for classification of ophiolites to low-Ti and high-Ti types.– Earth Planet. Sci. Lett., 52, 203–212.

SHERVAIS, J.W. (2001): Birth, dead, and resurrection: The Life cycle of supra-subduction zone ophiolites.– Geochem. Geophys. Geosys. 2, 1010, 45 p. doi: 10.1029/2000GC000080

SHIFFMAN, P. & LOFGREN, G.E. (1982): Dynamic crystallization studies on the Grande Ronde pillow basalts, Central Washington.– J. Geol., 90, 49–78. doi: 10.1086/628651

SLOVENEC, DA. & LUGOVIĆ B. (2000): Ultramafic cumulate rocks from the Medvednica Mts. ophiolite complex (Northwestern Croatia).– In: VLAHOVIĆ, I. & BIONDIĆ, R. (eds.): Proceedings of the 2nd Croatian Geological Congress. Institute of Geology, Zagreb, 379–385 (in Croatian with English summary).

SLOVENEC, DA. & LUGOVIĆ, B. (2008): Amphibole gabbroic rocks from the Mt. Medvednica ophiolite mélange (NW Croatia): geochemistry and tectonic setting.– Geol. Carpathica, 59, 277–293.

SLOVENEC, DA., LUGOVIĆ, B., MEYER, H-P. & GARAPIĆ-ŠIFTAR, G. (2011): A tectono-magmatic correlation of basaltic rocks from ophiolite mélanges at the north-eastern tip of the Sava-Vardar suture Zone, Northern Croatia, constrained by geochemistry and petrology.– Ofioliti, 36, 77–100.

STAMPFLI, G.M. & BOREL, G.D. (2002): A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic ocean isochrons.– Earth Planet. Sci. Lett., 196, 17–33.

STAMPFLI, G.M. & BOREL, G.D. (2004): The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain.– In: CAVAZZA, W., ROURE, F., SPAKMAN, W., STAMPFLI, G.M. & ZIEGLER, P.A. (eds.): The TRANSMED Atlas: the Mediterranean Region from crust to mantle. Heidelberg, Germany: Springer, 53–80. doi: 10.1007/978-3-642-18919-7_3

STEVENS, R.E. (1944): Composition of some chromites of the 255. Western Hemisphere.– Amer. Mineralogist, 29, l–34.

STORMER, J.C. (1973): Calcium zoning in olivine and its relationship to silica activity and pressure.– Geochim. Cosmochim. Acta, 37, 1815–1821. doi: 10.1016/0016-7037(73)90144-0

STRECKEISEN, A.L. (1974): Classification and nomenclature of plutonic rocks. Recommendations of the IUGS subcommission on the systematics of igneous rocks.– Geol. Rdsch., 63, 773–786.

SUN, S.S. & MCDONOUGH, W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes.– In: SAUNDERS, A.D. & NORRY, M.J. (eds.): Magmatism in ocean basins.– Geol. Soc. London, Spec. Publ., 42, 313–345.
doi: 10.1144/GSL.SP.1989.042.01.19

SUN, S.S. & NESBITT, R.W. (1978): Petrogenesis of Archaean Ultrabasic and Basic Volcanics: Evidence From Rare Earth Elements.– Contrib. Mineral. Petrol., 65, 301–325. doi: 10.1007/BF00375516

ŠEGVIĆ, B., LUGOVIĆ, B., SLOVENEC, DA. & MEYER, H.-P. (2016): Mineralogy, petrology and geochemistry of amphibolites from the Kalnik Mt. (Sava Unit, North Croatia): Implications for the evolution of north-westernmost part of the Dinaric- Vardar branch of Mesozoic Tethys.–Ofioliti, 41, 35–58. doi: 10.4454/ofioliti.v41i1.441

ŠIMUNIĆ, AN., PIKIJA, M. & HEĆIMOVIĆ, I. (1982): Osnovna geološka karta SFRJ 1:100000, list Varaždin L33-69 [Basic Geological Map of SFRY 1:100000. Varaždin sheet – in Croatian].– Institut za geološka istraživanja Zagreb, Savezni geološki zavod Beograd.

ŠIMUNIĆ, AN., PIKIJA, M., HEĆIMOVIĆ, I. & ŠIMUNIĆ, AL. (1981): Osnovna geološka karta SFRJ 1:100000. Tumač za list Varaždin L33-69 [Basic Geological Map of SFRY 1:100000, Geology of the Varaždin sheet – in Croatian].– Institut za geološka istraživanja Zagreb, Savezni geološki zavod Beograd, 1–81.

TATSUMI, Y. & EGGINS, S. (1995): Subduction zone magmatism.– Cambridge, Massachusetts, USA, Blacwell, 221 p.

TAYLOR, S.R. & McLENNAN, S.M. (1985): The continental crust: its composition and evolution. Blackwell, Oxford, 312 p.

TOMLJENOVIĆ, B., CSONTOS, L., MÁRTON, E. & MÁRTON, P. (2008): Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia.– Geol. Soc. London, Spec. Publ., 298, 145–167. doi: 10.1144/SP298.8

TRIBUZIO, R., RICCARDI, M.P. & OTTOLINI, L. (1995): Trace element redistribution in high temperature deformed gabbros from East Ligurian ophiolites (Northern Apennine, Italy): constraints on the origin of syndeformation fluids.– J. Metamorph. Geol., 13, 367–377.
doi: 10.1111/j.1525-1314.1995.tb00226.x

TRIBUZIO, R., TIEPOLO, M., VANNUCCI, R. & BOTTAZZI, P. (1999): Trace element distribution within the olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks.– Contrib. Mineral. Petrol., 134, 123–133.
doi: 10.1007/s004100050473

VRKLJAN, M. (1989): Eruptive rocks from Mt. Kalnik.– PhD Thesis, University of Zagreb, Zagreb, 94 p. (in Croatian with English summary).

VRKLJAN, M. & GARAŠIĆ, V. (2004): Different geochemical signatures developed in some basic magmatic rocks of Mt. Kalnik (North Croatia).– Rudarsko-geološkonaftni zbornik, 16, 65–73.

WAGER, L.R., BROWN, G.M. & WADSWORTH W.J. (1960): Types of igneous cumulate.– J. Petrol., 1, 73–85. doi: 10.1093/petrology/1.1.73

WAGER, L.R. & BROWN, G.M. (1968): Layered igneous rocks. Oliver & Boyd, Edinburgh and London, 588 p.

WAKABAYASHI, J. & DILEK, Y. (2003): What constitutes “emplacement” of an ophiolite?: mechanisms relationship to subduction initiation and formation of metamorphic soles.– In: DILEK, Y. & ROBINSON, P.T. (eds.): Ophiolites in Earth history.– Geol. Soc. London, Spec. Publ., 218, 427–447.

WASS, S.Y. (1979): Multiple origins of clinopyroxenes in alcalic basaltic rocks.– Lithos, 12, 116–132.