Application of innovative technologies in landslide research in the area of the City of Zagreb (Croatia, Europe)

Main Article Content

Snježana Mihalić Arbanas
Martin Krkač
Sanja Bernat

Abstract

This paper describes the application of innovative technologies for landslide detection, mapping and monitoring in the City of Zagreb since 2010. Airborne Light Detection and Ranging (LiDAR) data are used to visually identify landslides in the Podsljeme Zone over the area of 180 km2 for the purpose of landslide inventory mapping. The total number of landslides in the analyzed area (approx. 1,600 landslides) is estimated based on the average landslide density (9 landslides per square km) from the most reliable geomorphological historical inventory, which was produced in 1979. Examples of the visual interpretation of very-high-resolution bare-earth DEMs (Digital Elevation Model) are given to show the potential of these innovative techniques to identify the landslide contours of the very small, small and moderately small landslides that are characteristic of the study area, which is composed of engineering soils and/or soft rocks (marls). In the framework of the described landslide research, the biggest landslide in the Podsljeme Zone, the Kostanjek landslide (landslide area of 1 km2), was also equipped with an automated near-real time monitoring system that encompassed approximately 40 sensors to monitor landslide movement and landslide causal factors. Monitoring of this deep and large landslide during multiple extreme hydro-meteorological events from January 2013 to January 2015 enabled collection of data for the analysis of landslide movement on the surface and in the underground and as well as analysis of the relationship between landslide reactivations and its triggers, i.e., changes in groundwater level and precipitation. The final aim of the described scientific research in terms of landslide mapping and monitoring is its practical application in land-use planning and civil protection systems in the City of Zagreb. Namely, the conclusions propose reliable and efficient methods for landslide identification and monitoring, which are necessary to provide data and solutions for hazard and risk reduction to local authorities that are managed by the City.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

ANGELI, M. G., GASPARETTO, P. & BROMHEAD, E. (2004): Strength-regain mechanisms in intermittently moving landslides. – In: LACERDA, W., EHRLICH, M., FONTOURA, S.A.B. & SAYAO, A.S.F. (eds.): Proceedings of the 9th International Symposium on Landslides, Vol. 1. Rio de Janeiro, Brasile, June 28-July 2, 2004. Taylor & Francis, London, 689-696.

ARBANAS, Ž., SASSA, K., MARUI, H. & MIHALIĆ, S. (2012): Comprehensive monitoring system on the Grohovo Landslide, Croatia. – In: EBERHARDT, E., FROESE, C., TURNER, K., & LEROUEIL, S. (eds.): Landslides and Engineered Slopes: Protecting Society through Improved Understanding, Proceedings of the 11th International & 2nd North American Symposium on Landslides, Banff, Canada, June 3-8, 2012. Taylor and Francis Group, London, 1441-1447.

ARDIZZONE, F., CARDINALI, M., GALLI, M., GUZZETTI, F. & REICHENBACH, P. (2007): Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. – Natural Hazards and Earth System Sciences, 7/6, 637–650.

AVANIĆ, R., KOVAČIĆ, M., PAVELIĆ, D., MIKNIĆ, M., VRSALJKO, D., BAKRAČ, K. & GALOVIĆ, I. (2003): The middle and upper Miocene facies of Mt. Medvednica (Northern Croatia). – In: VLAHOVIĆ, I & TIŠLJAR, J. (eds.).: Evolution of Depositional Environments from the Palaeozoic to the Quaternary in the Karst Dinarides and the Pannonian Basin, 22nd IAS Meeting of Sedimentology, Opatija, Croatia, Sept. 17–19, 2003. Institute of Geology, Zagreb, 167-172.

BAROŇ, I., SUPPER, R. & OTTOWITZ, D. (2012): Report on evaluation of mass movement indicators, SafeLand deliverable D4.6. – Geological Survey of Austria, Vienna, 382 p.

BELIĆ, N., MIHALIĆ ARBANAS, S., ŠIŠKO, D. & GAJSKI, D. (2014): Derivation of historical land cover map based on digital orthophoto images of the Zagreb Area. – In: MIHALIĆ ARBANAS, S. & ARBANAS, Ž. (eds.): Landslide and Flood Hazard Assessment, Proceedings of the 1st Regional Symposium on Landslides in the Adriatic-Balkan Region, Zagreb, Croatia, March 6-9, 2013. Croatian Landslide Group, Zagreb, 63-66.

BERNAT, S., MIHALIĆ ARBANAS, S. & KRKAČ, M. (2014a): Inventory of precipitation triggered landslides in the winter of 2013 in Zagreb (Croatia, Europe). – In: SASSA, K., CANUTI, P. & YIN, Y. (eds.): Proceedings of the 3rd World Landslide Forum, Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies, Beijing, China, June 2-6, 2014. Springer, Cham, 829-836.

BERNAT, S., MIHALIĆ ARBANAS, S. & KRKAČ, M. (2014b): Landslides triggered in the continental part of Croatia by extreme precipitation in 2013. – In: LOLLINO, G., GIORDAN, D., BATTISTA CROSTA, G., COROMINAS, J., AZZAM, R., WASOWSKI, J. & SCIARRA, N. (eds.): Proceedings of the XII IAEG Congress, Engineering Geology for Society and Territory, Vol. 2, Landslide Processes, Torino, Italy, Sept. 15-19, 2014. Springer, Heidelberg, 1599-1603.

BERNAT, S., MIHALIĆ ARBANAS, S. & KRKAČ, M. (2015): Catalog of precipitation events that triggered landslides in northwestern Croatia. – In: Proceedings of the 2nd Regional Symposium on Landslides in the Adriatic-Balkan Region, Beograd, Serbia, March 6-9, 2013. In press.

BLIKRA, L.S. (2012): The Åknes rockslide, Norway. – In: CLAGUE, J.J., STEAD, D. (eds.): Landslides – Types, Mechanisms and Modeling. Cambridge University Press, Cambridge, 323-334.

BOGNAR, A. (2001): Geomorfološka regionalizacija Hrvatske [Geomorphological Regionalisation of Croatia – in Croatian]. – Acta Geographica Croatica, 34, 7-29.

BRÜCKL, E., BRUNNER, F.K. & KRAUS, K. (2006): Kinematics of a deep‐seated landslide derived from photogrammetric, GPS and geophysical data. – Engineering Geology, 88, 149-159.

BRUNSDEN, D. (1993): Mass movements; the research frontier and beyond: A geomorphological approach. – Geomorphology, 7, 85-128.

CARTER, W., SHRESTHA. R., TUELL, G., BLOOMQUIST, D. & SARTORI, M. (2001): Airborne Laser Swath Mapping shines new light on earth’s topography. – EOS, Transactions, American Geophysical Union, 82/46, 549-555.

CASTAGNETTI, C., BERTACCHINI, E., CORSINI, A. & CAPRA, A. (2013): Multi-sensors integrated system for landslide monitoring: Critical issues in system setup and data management. – European Journal of Remote Sensing, 46, 104-124.

CESAREC, M. & POLAK, K. (1986): Klizišta na području grada Zagreba [Landslides in the area of the Zagreb City– in Croatian]. – In: Proceedings of the XVI Symp. YSSMFE, Aranđelovac, Yugoslavia, Nov. 5-8, 1986. 169-184.

CHEN, R.-F., CHANG, K.-J., ANGELIER, J., CHAN, Y.-C., DEFFONTAINES, B., LEE, C.-T., & LIN, M.-L. (2006): Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi-Chi earthquake. – Engineering Geology, 88/3-4, 160–172.

CORSINI, A., PASUTO, A., SOLDATI M. & ZANNONI, A. (2005): Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. – Geomorphology, 66, 149-165.

COTECCHIA, V. (2006): The Second Hans Cloos Lecture. Experience drawn from the great Ancona landslide of 1982. – Bulletin of Engineering Geology and the Environment, 65, 1-41.

CRUDEN, D.M. & VARNES, D.J. (1996): Landslide types and processes. – In: TURNER, A.K. & SCHUSTER, R.L. (eds.): Landslides: Investigation and Mitigation, Transportation. Research Board Special Report 247, National Research Council, Washington, D.C., 36-75.

ĐOMLIJA, P., BERNAT, S., MIHALIĆ ARBANAS, S., & BENAC, Č. (2014): Landslide inventory in the area of Dubračina River Basin (Croatia). – In: SASSA, K., CANUTI, P. & YIN, Y. (eds.): Proceedings of the 3rd World Landslide Forum, Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies, Beijing, China, June 2-6, 2014. Springer, Cham, 837-842.

FELL, R., COROMINAS, J., BONNARD, C., CASCINI, L., LEROI, E. & SAVAGE W.Z. (2008): Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. – Engineering Geology, 102, 85-98.

FERIĆ, P., MIHALIĆ, S. & KRKAČ, M. (2012): Visual mapping of landslides from LiDAR imagery, Zagreb, Croatia. – In: OŽANIĆ, N., ARBANAS, Ž., MIHALIĆ, S., MARUI, H. & DRAGIČEVIĆ, N. (eds.): Proceedings of the 2nd Workshop of the Croatian-Japanese SATREPS FY2008 Project, Rijeka, Croatia, Dec. 15-17, 2011. University of Rijeka, Rijeka, 130-133.

FIJEMBER, M. (1942): Klizanje tla zagrebačkih obronaka [Landslides in the hilly area of the City of Zagreb – in Croatian]. – Tehnički vjesnik, 59, 20-29.

FROESE, C.R., CHARRIÈRE, M., HUMAIR, F., JABOYEDOFF, M. & PEDRAZZINI, A. (2012): Characterization and management of rockslide hazard at Turtle Mountain, Alberta, Canada. – In: CLAGUE, J.J. & STEAD, D. (eds.): Landslides – Types, Mechanisms and Modeling. Cambridge University Press, Cambridge, 310-322.

FUKUZONO, T. (1985): A new method for predicting the failure time of a slope. – In: Proceedings of 4th International Conference and Field Workshop on Landslides. Japan Landslide Society, Tokyo, 145-150.

GALLI, M., ARDIZZONE, F., CARDINALI, M., GUZZETTI, F. & REICHENBACH, P. (2008): Comparing landslide inventory maps. – Geomorphology, 94, 268-289.

GERBER, N. (2012): Analiza postojećih podataka o klizištima i uzrocima klizanja u Podsljemenskoj zoni [Analysis of existing data on landslides and their initiators in hilly area of the Zagreb City in Croatian, with an English Abstract]. – Unpubl. MS thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 40 p.

GLENN, N. F., STREUTKER, D. R., CHADWICK, D. J., THACKRAY, G. D., & DORSCH, S. J. (2006): Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. – Geomorphology, 73/1-2, 131-148.

GRADIŠKI, K., KRKAČ, M., MIHALIĆ ARBANAS, S. & BERNAT, S. (2013): Slope stability analyses of the Kostanjek Landslide for extreme rainfalls in the winter of 2013. – In: VLASTELICA, G., ANDRIĆ, I. & SALVEZANI, D. (eds.): Book of abstracts, 4th workshop of the Japanese-Croatian project on Risk Identification and Land-Use Planning for Disaster Mitigation of Landslides and Floods in Croatia, Split, Croatia, Dec. 12-14, 2010. University of Split, Faculty of Civil Engineering, Architecture and Geodesy, 15-16.

GRADIŠKI, K., SASSA, K., HE, B., KRKAČ, M., MIHALIĆ ARBANAS, S., ARBANAS, Ž., OŠTRIĆ, M. & KVASNIČKA, P. (2014): Application of integrated landslide simulation model using LS-Rapid software to the Kostanjek Landslide, Zagreb, Croatia. – In: MIHALIĆ ARBANAS, S. & ARBANAS, Ž. (eds.): Landslide and Flood Hazard Assessment, Proceedings of the 1st Regional Symposium on Landslides in the Adriatic-Balkan Region, Zagreb, Croatia, March 6-9, 2013. Croatian Landslide Group, Zagreb, 11-16.

GUZZETTI, F., MONDINI, A.C., CARDINALI, M., FIORUCCI, F., SANTANGELO, M. & CHANG. K.T. (2012): Landslide inventory maps: New tools for an old problem. – Earth-Science Reviews, 112, 42-66.

JABOYEDOFF, M., OPPIKOFER T., ABELLAN, A., DERRON M.H., LOYE A., METZGER R. & PEDRAZZINI A. (2010): Use of LIDAR in landslide investigations: A review. – Natural Hazards, 61/1, 5-28.

JUKIĆ, M. & SOKOLIĆ, Ž. (2013): Tehničko promatranje sustava za prihvat i odvodnju voda kao jedan od osnovnih elemenata u strategiji zaštite od klizišta [Technical survey of water recharge and drainage as one of the basic element in strategy of slope remediation – in Croatian]. – In: MATEŠIĆ, L. & SOKOLIĆ, I. (eds.): 6. Savjetovanje Hrvatskog geotehničkog društva, Sanacija, tehničko praćenje i održavanje u geotehnci, Zadar, Peruća, Croatia, Oct. 17-19, 2013. Hrvatsko geotehničko društvo, 173-179.

JURAK, V., MATKOVIĆ, I., MIKLIN, Ž. & MIHALIĆ, S. (1996): Data analysis of the landslides in the Republic of Croatia: Present state and perspectives. – In: SENNESET, K. (ed.): Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway, June 17-21, 1996. CRC Press, Taylor & Francis, London, 1923-1928.

JURAK, V., ORTOLAN, Ž., IVŠIĆ, T., HERAK, M., ŠUMANOVAC, F., VUKELIĆ, I. & JUKIĆ, M. (2008): Geotehničko i seizmičko mikrozoniranje grada Zagreba – pokušaji i ostvarenje. [Geotechnical and seismic microzonation of Zagreb: Attempts and realization – in Croatian]. – In: RADIĆ, J. (ed.): Zbornik radova konferencije Razvitak Zagreba, Zagreb, Croatia, Feb. 1-2, 2008. SECON HDGK, Zagreb, 99-108.

KRKAČ, M. (2015): Fenomenološki model gibanja klizišta Kostanjek na osnovi praćenja parametara klizanja [A phenomenological model of the Kostanjek landslide movement based on the landslide monitoring parameters – in Croatian]. – Unpubl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 210 p.

KRKAČ, M., MIHALIĆ, S., FERIĆ, P., PODOLSZKI, L., TOŠEVSKI, A. & ARBANAS, Ž. (2013): Japanese-Croatian Project: Preliminary investigations of the Kostanjek landslide. – In: MARGTTINI, C., CANUTI, P. & SASSA, K. (eds.): Proceedings of 2nd World Landslide Forum, 'Landslide Science and Practice’, Vol. 6, Rome, Italy, Oct. 3-9, 2011. Springer, Germany, 385-390.

KRKAČ, M., MIHALIĆ ARBANAS, S., ARBANAS, Ž., BERNAT, S. & ŠPEHAR, K. (2014a): The Kostanjek landslide in the City of Zagreb: Forecasting and protective monitoring. – In: LOLLINO, G., MANCONI, A., GUZZETTI, F., CULSHAW, M., BOBROWSKY, P. & LUINO, F. (eds.): Proceedings of the XII IAEG Congress, Engineering Geology for Society and Territory, Vol. 5, Urban Geology, Sustainable Planning and Landscape Exploitation, Torino, Italy, Sept. 15-19, 2014. Springer, Heidelberg, 715-719.

KRKAČ, M., MIHALIĆ ARBANAS, S., ARBANAS, Ž., BERNAT, S., ŠPEHAR, K., WATANABE, N., OSAMU, N., SASSA, K., MARUI, H., FURUYA, G., WANG, C., RUBINIĆ, J. & MATSUNAMI, K. (2014b): Review of monitoring parameters of the Kostanjek landslide (Zagreb, Croatia). – In: SASSA, K., CANUTI, P. & YIN, Y. (eds.): Proceedings of the 3rd World Landslide Forum, Landslide Science for a Safer Geoenvironment, Volume 2: Methods of Landslide Studies, Beijing, China, June 2-6, 2014. Springer, Cham, 2014, 637-645.

KRKAČ, M., MIHALIĆ ARBANAS, S., NAGAI, O. & ARBANAS, Ž. (2014c): The Kostanjek landslide – Monitoring system development and sensor network. – In: MIHALIĆ ARBANAS, S. & ARBANAS, Ž. (eds.): Landslide and Flood Hazard Assessment, Proceedings of the 1st Regional Symposium on Landslides in the Adriatic-Balkan Region, Zagreb, Croatia, March 6-9, 2013. Croatian Landslide Group, Zagreb, 2014, 27-32.

LONČAR VLAIĆ, A., SORIĆ, O. & HRŠAK, A. (2004): Sanacija nestabilnih lokaliteta na području Grada Zagreba [Remediation of instabilities at the area of the Zagreb City – in Croatian]. – In: Proceedings of the 4th Symposia of the Slovenian Geotechnician and 5th Šuklje’s Day, Rogaška Slatina, Slovenia, June 9-11, 2004. 305-314.

MAGDALENIĆ, A. (1967): Klizišta u sjeverozapadnoj Hrvatskoj [Landslides in the north-west Croatia – in Croatian]. – In: Proceedings in Road Design and Construction in SFR Yugoslavia. 95-101.

MANSOUR, M.F., MORGENSTERN, N.R. & MARTIN, D. (2010): Expected damage from displacement of slow-moving slides. – Landslides, 8, 117-131.

MCKEAN, J., & ROERING, J. (2004): Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. – Geomorphology, 57/3-4, 331-351.

MIHALIĆ, S. (1998): Recommendations for landslide hazard and risk mapping in Croatia. – Geologia Croatica, 51/2, 195-204.

MIHALIĆ, S. & ARBANAS, Ž. (2012): The Croatian-Japanese joint research project on landslides: Activities and public benefits. – In: SASSA, K., ROUHBAN, B., BRICEÑO, S., MCSAVENEY, M., HE, B. (eds.): Landslides: Global Risk Preparedness. Springer, Heidelberg, 333-349.

MIHALIĆ, S., BERNAT, S., HAMASAKI, E. & GERBER, N. (2012): Historical landslides in the City of Zagreb: Landslide distribution analysis and 3D modeling of typical landslides in AdCALC3D. – In: OŽANIĆ, N., ARBANAS, Ž., MIHALIĆ, S., MARUI, H. & DRAGIČEVIĆ, N. (eds.): Proceedings of the 2nd Workshop of the Croatian-Japanese SATREPS FY2008 Project, Rijeka, Croatia, Dec. 15-17, 2011. University of Rijeka, Rijeka, 2012, 122-125.

MIHALIĆ, S., MARUI, H., NAGAI, O., YAGI, H., MIYAGI, T. (2013): Landslide inventory in the area of Zagreb City: Effectiveness of using LiDAR DEM. – In: MARGTTINI, C., CANUTI, P. & SASSA, K. (eds.): Proceedings of 2nd World Landslide Forum, 'Landslide Science and Practice’, Vol. 1, Rome, Italy, Oct. 3-9, 2011. Springer-Verlag, Germany, 155-162.

MIHALIĆ ARBANAS, S. & ARBANAS, Ž. (2014): Landslides: A guide to researching landslide phenomena and processes. – In: GAURINA MEĐIMUREC, N. (ed.): Handbook of Research on Advancements in Environmental Engineering. Engineering Science Reference, Hershey PA, USA, 474-508.

MIHALIĆ ARBANAS, S., ARBANAS, Ž., BERNAT, S., KRKAČ, M., KALINIĆ, P., MARTINOVIĆ, K., FABRIS, N., SAJKO, J. & ANTOLOVIĆ, A., (2013a): Upravljanje kriznim situacijama uslijed pokretanja klizišta [Crisis management in case of landslide activations – in Croatian]. – In: PERINIĆ, J. (ed.): Zbornik radova V. konferencije Hrvatske platforme za smanjenje rizika od katastrofa, Valbadon, Croatia, Oct. 17, 2013. Državna uprava za zaštitu i spašavanje, Zagreb, 151-164.

MIHALIĆ ARBANAS, S., ARBANAS, Ž. & KRKAČ, M. (2013b): Comprehensive landslide monitoring system: The Kostanjek Landslide case study, Croatia. – In: SASSA, K., HE, B., MCSAVENEY, M. & OSAMU, N. (eds.): ICL Landslide Teaching Tools. International Consortium on Landslides, Kyoto, Japan, 158-168.

MIHALIĆ ARBANAS, S., BERNAT, S., FABIJANOVIĆ, S. & ARBANAS, Ž. (2014): The Analysis of historical landslide information from the area of the City of Zagreb and Primorsko-Goranska County. – In: MIHALIĆ ARBANAS, S. & ARBANAS, Ž. (eds.): Landslide and Flood Hazard Assessment, Proceedings of the 1st Regional Symposium on Landslides in the Adriatic-Balkan Region, Zagreb, Croatia, March 6-9, 2013. Croatian Landslide Group, Zagreb, 91-96.

MIHALIĆ ARBANAS, S., KRKAČ, M., BERNAT, S. & ARBANAS, Ž. (2012): Use of existing data in the City of Zagreb (Croatia, Europe) for the purpose of geo-planning. – In: ZHOU, Y., CAI, J. & STERLING, R. (eds.): Proceedings 'Advances in Underground Space Development', Singapore, November 7-9, 2012. Research Publishing, 465-477.

MIHALINEC, Z. & ORTOLAN, Ž. (2008): Landslide ‘Granice’ in Zagreb (Croatia). – In: CHEN, Z., ZHANG, J.-M., HO, K., WU, F.-Q. & LI, Z.-K. (eds.): Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, Xi’an, China, 30 June-4 July, 2008. CRC Press, 1587-1593.

MIKLIN, Ž., MLINAR, Ž., BRKIĆ, Ž., HEĆIMOVIĆ, I. & DOLIĆ, M. (2007): Detaljna inženjerskogeološka karta Podsljemenske urbanizirane zone u mjerilu 1:5.000 (DIGK-Faza I) [Detailed engineering geological map of the Podsljeme urbanized zone in a scale of 1:5,000 (DIGK-Phase I) – in Croatian]. – Croatian Geological Survey, Zagreb, Croatia.

NONVEILLER, E. (1964): Klizište u krutoj raspucaloj diluvijalnoj glini na Prekrižju u Zagrebu [Landslide in stiff fractured diluvial clay at the Prekrižje in Zagreb – in Croatian]. – Građevinar, 2, 58-64.

NONVEILLER, E. (1987): Kliženje i stabilizacija kosina [Sliding and slope stabilization – in Croatian]. – Školska knjiga, Zagreb, Croatia, 204 p.

NONVEILLER, E., KLEMENČIĆ, B., LORENCIN, LJ. & POLAK, K. (1971): Klizište Jelenovac u Zagrebu [Jelenovac Landslide in Zagreb – in Croatian]. – Građevinar, 23/11, 362-367.

ORTOLAN, Ž. (1996): Formiranje prostornog inženjerskogeološkog modela dubokog klizišta s više kliznih ploha (na primjeru klizišta Podsused) [Development of 3D engineering geological model of deep landslide with multiple sliding surffaces (Example of the Podsused Landslide) – in Croatian]. – Unpubl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 236 p.

ORTOLAN, Ž. & PLEŠKO, J. (1992): Repeated photogrammetric measurements at shaping geotechnical models of multi-layer. – Rudarsko-geološko-naftni zbornik, 4, 51-58.

ORTOLAN, Ž., JURAK, V., IVŠIĆ, T., HERAK, M. & VUKELIĆ, I. (2008): Geotehničke okolnosti – rubni uvjet održivog razvitka "Podsljemenske urbanizirane zone [Geotechnical circumstances – boundary conditions for sustainable development of the ‘Podsljeme Foothills Urbanized zone’ – in Croatian]. – In: RADIĆ, J. (ed.): Proceedings of the Conference ‘Development of the Zagreb’, Zagreb, Croatia, Feb. 1-2, 2008. SECON HDGK, Zagreb, 273-284.

PAVELIĆ, D., AVANIĆ, R., KOVAČIĆ, M., VRSALJKO, D. & MIKNIĆ, M. (2003): An outline of the evolution of the Croatian part of the Pannonian Basin System. – In: VLAHOVIĆ, I. & TIŠLJAR, J. (eds.): 22nd IAS Meeting of Sedimentology, Opatija 2003 − Field Trip Guidebook. Institute of Geology, Zagreb, 155-161.

PETLEY, D.N., MANTOVANI, F., BULMER, M.N. & ZANNONI, A. (2005): The use of surface monitoring data for the interpretation of landslide movement patterns. – Geomorphology, 66/1-4, 133-147.

PODOLSZKI, L. (2014): Stereoskopska analiza klizišta i relativne opasnosti od klizanja na južnim obroncima Medvednice [Stereoscopic analysis of landslides and landslide susceptibility on the southern slopes of Medvednica Mt. – in Croatian]. – Unpbl. PhD Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 322 p.

PODOLSZKI, L., MIHALIĆ ARBANAS, S., ARBANAS, Ž., MIKLIN, Ž. & MARTINČEVIĆ, J. (2014): Overview of historical landslide inventories of the Podsljeme Area in the City of Zagreb. – In: MIHALIĆ ARBANAS, S. & ARBANAS, Ž. (eds.): Landslide and Flood Hazard Assessment, Proceedings of the 1st Regional Symposium on Landslides in the Adriatic-Balkan Region, Zagreb, Croatia, March 6-9, 2013. Croatian Landslide Group, Zagreb, 27-32.

POLAK, K. (1978): Neke značajke kvartarnih sedimenata istraživanih na primjeru klizišta Jelenovac kraj Zagreba [Some of the properties of the Quaternary deposits – Case study of the Jelenovac Landslide near Zagreb – in Croatian]. – Geološki vjesnik, 30/1, 151-165.

POLAK, K., KLEMAR, M., NEJKOVA, M., RADOŠEVIĆ, N., STEPAN, Z., MIROSLAV, M. & KRIŽANIĆ, Z. (1979): Litološka obrada i kategorizacija terena prema stabilnosti tla obronaka Medvednice na području grada Zagreba [Lithological characterization and slope stability zonation of the hilly area of Medvenica Mt. at the area of the Zagreb city – in Croatian]. – Geotehnika-Geoexpert, Zagreb, Croatia, 107 p.

POLAK, K., NONVEILLER, E., KLEMENČIĆ, B. & LORENCIN, LJ. (1971): Studija sanacije klizišta Jelenovac u Zagrebu [Remediation study of the Jelenovac Landslide in Zagreb – in Croatian]. – In: Proceedings of the 1st Yugoslav Symposium on Hydrogeology and Engineering Geology, Hercegnovi, Yugoslavia, May 4-8, 1971. 165-172.

RAZAK, K.A., STRAATSMA, M.W., VAN WESTEN, C.J., MALET, J.-P. & DE JONG, S.M. (2011): Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. – Geomorphology, 126, 186-200.

REUTEBUCH, S.E., MCGAUGHEY, R.J., ANDERSON, H.E. & CARSON, W.W. (2003): Accuracy of a high-resolution LiDAR terrain model under a conifer forest canopy. – Canadian Journal of Remote Sensing, 29, 527-535.

SANTANGELO, M., CARDINALI, M., ROSSI, M., MONDINI, A.C. & GUZZETTI, F. (2010). Remote landslide mapping using a laser rangefinder binocular and GPS. – Natural Hazards and Earth System Sciences, 10/12, 2539-2546.

SASSA, K. & HE, B. (2013): TXT-tool 3.081-1.2 Landslide dynamics. – In: SASSA, K., HE, B., MCSAVENEY, M. & OSAMU, N. (eds.): ICL Landslide Teaching Tools. – International Consortium on Landslides, Kyoto, Japan, 215-237.

SCHULZ, W.H. (2007): Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. – Engineering Geology, 89, 67-87.

SHAN, J. & TOTH, C.K. (2009): Topographic laser ranging and scanning: Principles and processing. – CRC Press, Taylor and Francis Group, Boca Raton, Florida, 590p.

SOKOLIĆ, Ž., DUJMIĆ, D. & ŠIKIĆ, V. (1986): Istraživanja primijenjena pri definiranju geotehničkih uvjeta izgradnje na području provedbenog urbanističkog plana Pavleka Miškine [Investigations applied for the definition of geotechnical condition for construction at the area of Urban Plan of Pavleka Miškine-Vrhovec – in Croatian]. – In: Proceedings of the 16th Symposia of the JDMTF, Aranđelovac, Yugoslavia, Nov. 5-8, 1986. 395-414.

SOKOLIĆ, Ž., HRŠAK, A. & VLAIĆ LONČAR, A. (2006): Negativni utjecaji nekontroliranog odlaganja otpada na području Podsljemenske zone u Zagrebu [Negative influence of uncontrolled waste disposals in the area of hilly zone of the Zagreb City – in Croatian]. – In: MILANOVIĆ, Z. (ed.): Proceedings of the 9th International Symposia of the Waste Management, Zagreb, Croatia, Nov. 15-18, 2006. 1-22.

SOKOLIĆ, Ž., ZVORNIK, D. & ŽELJEM, S. (2008): Specifičnost gradnje na nestabilnim padinama grada Zagreba na primjeru dvije građevine u ulici Sv. Duh [Specifities of building on unstable slopes of Zagreb City on example of two buildings in Sveti Duh Street – in Croatian]. – In: Proceedings of the Conference ‘Development of the Zagreb’, Zagreb, February 1-2, 2008. City of Zagreb and Croatian Engineering Association, 295-298.

STANIĆ, B. & NONVEILLER, E. (1996): The Kostanjek landslide in Zagreb. – Engineering Geology, 42, 269-283.

ŠAGUD, D. (2015): Statistička analiza inventara klizišta Podsljemenske zone iz 1979. godine [Statistical analysis of landslide inventory of the Podsljeme area from 1979 – in Croatian]. – Unpubl. MS Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 47 p.

ŠIKIĆ, V. (1967): Inženjerska geologija Zagreb – sjever i jug [Engineering geology Zagreb – north and south – in Croatian]. – Croatian Geological Survey, Zagreb, 152 p.

ŠIKIĆ, K. (1995): Geološki vodič Medvednice [A Geological Guide to Medvednica Mt. – in Croatian]. – Croatian Geological Survey and INA-Industrija nafte, Zagreb, 199 p.

ŠIKIĆ, V., VILJEVAC, Ž. & BASTALIĆ, N. (1984): Nastanak klizišta na Kajfešovom bregu u Zagrebu [Origin of the landslides at the Kajfeš hill in Zagreb – in Croatian]. – In: Proceedings of the 8th Yugoslav. Symposia on Hydrogeology and Engineering Geology, Budva, Yugoslavia, September 18-22, 1984. 213-219.

TOFANI, V., SEGONI, S., AGOSTINI, A., CATANI, F. & CASAGLI, N. (2013a): Technical Note: Use of remote sensing for landslide studies in Europe. – Natural Hazards and Earth System Sciences, 13, 299-309.

TOFANI, V., RASPINI, F., CATANI, F. &, CASAGLI, N. (2013b): Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. – Remote Sensing, 5, 1045-1065.

VAN DEN EECKHAUT, M., POESEN, J., VERSTRAETEN, G., VANACKER, V., NYSSEN, J., MOEYERSONS, J., VAN BEEK, L.P.H. & VANDEKERCKHOVE, L. (2007): Use of LIDAR-derived images for mapping old landslides under forest. – Earth Surface Processes and Landforms, 32, 754-769.

VAN WESTEN, C.J., CASTELLANOS ABELLA, E.A. & SEKHAR, L.K. (2008): Spatial data for landslide susceptibility, hazards and vulnerability assessment: An overview. – Engineering Geology, 102, 112-131.

VRSALJKO, D., PAVELIĆ, D., MIKNIĆ, M., BRKIĆ, M., KOVAČIĆ, K., HEĆIMOVIĆ, I., HAJEK-TADESSE, V., AVANIĆ, R. & KURTANJEK, N. (2006): Middle Miocene (Upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia). – Geologia Croatica, 59/1, 51-63.

ŽUPANOVIĆ, LJ., OPATIĆ, K. & BERNAT, S. (2012): Određivanje pomaka klizišta Kostanjek relativnom statičkom metodom [Monitoring of displacements of the Kostanjek landslide using relative static method – in Croatian]. – Ekscentar, 15, 46-53.