Petrochronological study of chloritoid schist from Medvednica Mountain (Zagorje Mid-Transdanubian zone, Croatia)

Main Article Content

Ivan Mišur
Dražen Balen
Urs Klötzli
Mirko Belak
Hans-Joachim Massonne
Mihovil Brlek
Vlatko Brčić


The metamorphic conditions and evolution of the Palaeozoic-Mesozoic metamorphic complex of Medvednica Mountain (Zagorje-Mid-Transdanubian zone, Croatia) are still a matter of debate. The results of the investigation of five samples of metapelitic schists with the mineral association of quartz, white mica and chlorite are presented. The studied schists are part of the continental margin of Adria and were metamorphosed under upper greenschist- to amphibolite-facies conditions. The focus of this study is a sample representing the highest metamorphic grade that additionally contains chloritoid blasts. Pressure-temperature pseudosection modelling together with classical geothermobarometric calculations yielded peak metamorphic conditions of 0.94 ± 0.05 GPa and 550 ± 20 °C for chloritoid schist. Monazite in-situ U-Th-total Pb electron microprobe dating indicates two metamorphic events at 167 ± 2 Ma and 143 ± 2 Ma, which are interpreted as the time of monazite growth during two distinct metamorphic phases. The formation of the chloritoid  paragenesis is related to the older event (around 167 Ma) and linked with the Middle Jurassic subduction-accretion processes of Neotethys-derived ophiolitic lithologies. The younger metamorphic event (around 143 Ma) is related to the obduction of ophiolites onto the continental margin of Adria.


Download data is not yet available.

Article Details

Original Scientific Papers
Author Biographies

Dražen Balen, University of Zagreb, Faculty of Science, Department of Geology, Division of Mineralogy and Petrology, Zagreb, Croatia

Universitiy of Zagreb, Faculty of Science, Department of Geology, Division of Mineralogy and Petrology, Horvatovac 95, Zagreb, Croatia

Urs Klötzli, University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Lithospheric Research, Wien, Austria

University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Department of Lithospheric Research, Althanstraße 14 (UZA II), 1090 Wien, Austria

Mirko Belak, Croatian Geological Survey, Zagreb, Croatia

Croatian Geological Survey, Department of Geology, Sachsova 2, HR-10000 Zagreb, Croatia

Hans-Joachim Massonne, Universität Stuttgart, Fakultät Chemie, Institut für Mineralogie und Kristallchemie, Stuttgart, Germany; School of Earth Sciences, China University of Geosciences, Wuhan, China

Universität Stuttgart, Fakultät Chemie, Institut für Mineralogie und Kristallchemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany

State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China

Mihovil Brlek, Croatian Geological Survey, Zagreb, Croatia

Croatian Geological Survey, Department of Geology, Sachsova 2, HR-10000 Zagreb, Croatia

Vlatko Brčić, Croatian Geological Survey, Zagreb, Croatia

Croatian Geological Survey, Department of Geology, Sachsova 2, HR-10000 Zagreb, Croatia


ABD ELMOLA, A., CHARPENTIER, D., BUATIER, M., LANARI, P. & MONIÉ, P. (2017): Textural-chemical changes and deformation conditions registered by phyllosilicates in a fault zone (Pic de Port Vieux thrust, Pyrenees).– Applied Clay Science, 144, 88–103. doi: 10.1016/j.clay.2017.05.008

ANDERSSON, S.S., WAGNER, T., JONSSON, E. & MICHALLIK, R.M. (2018): Mineralogy, paragenesis, and mineral chemistry of REEs in the Olserum-Djupedal REE-phosphate mineralization, SE Sweden.– American Mineralogist, 103, 125–142. doi: 10.2138/am-2018-6202

ARBIOL, C., LAYNE, G.D., ZANONI, G. & ŠEGVIĆ, B. (2021): Characteristics and genesis of phyllosilicate hydrothermal assemblages from Neoproterozoic epithermal Au-Ag mineralisation of the Avalon Zone of Newfoundland, Canada.– Applied Clay Science, 202, 105960. doi: 10.1016/j.clay.2020.105960

BABIĆ, Lj., HOCHULI, P.A. & ZUPANIČ, J. (2002): The Jurassic ophiolitic mélange in the NE Dinarides: Dating, internal structure and geotectonic implications.– Eclogae Geologicae Helvetiae, 95, 263–275. doi: 10.5169/seals-168959

BAILEY, S.W. (1980): Summary of recommendations of AIPEA nomenclature committee on clay minerals.– American Mineralogist, 65, 1–7.

BALEN, D., HORVÁTH, P., FINGER, F. & STARIJAŠ, B. (2013): Phase equilibrium, geothermobarometric and xenotime age dating constrains on the Alpine metamorphism recorded in chloritoid schists from the southern part of the Tisia Mega-Unit (Slavonian Mts., NE Croatia).– International Journal of Earth Sciences., 102/4, 1091–1109. doi: 10.1007/500531-012-0850-8

BASCH, O. (1983a): Osnovna geološka karta SFRJ 1:100.000, list Ivanić-Grad L33-81 [Basic Geological Map of SFRY 1:100000, Ivanić-Grad sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd.

BASCH, O. (1983b): Osnovna geološka karta SFRJ 1:100.000, Tumač za list Ivanić-Grad [Basic Geological Map of SFRY 1:100000, Geology of the Ivanić-Grad sheet – in Croatian].– Geološki zavod, Zagreb, Savezni geološki zavod, Beograd, 81 p.

BELAK, M. (2005): Metamorfne stijene plavih i zelenih škriljavaca na Medvednici [Metamorphic rocks of the blueschist and greenschist on the Medvednica Mt. – in Croatian, with an English Abstract].– Unpubl. PhD Thesis, Faculty of Science, University of Zagreb, 295 p.

BELAK, M. & TIBLJAŠ, D. (1998): Discovery of the blueschist in the Medvednica Mountain (Northern Croatia) and their significance for the interpretation of the geotectonic evolution of the area.– Geologia Croatica, 51/1, 27–32. doi: 10.4154/GC.199/05

BELAK, M., PAMIĆ, J., KOLAR-JURKOVŠEK, T., PECKAY, Z. & KARAN, D. (1995a): Alpinski regionalnometamorfni kompleks Medvednice (sjeverozapadna Hrvatska) [Alpine low-grade regional metamorphic complex of Mt. Medvednica northwestern Croatia – in Croatian].– In: VLAHOVIĆ, I. et al. (eds): 1st Croatian Geological Congress, Proceedings, 1, 67–70.

BELAK, M., SREMAC, J., CRNKO, J. & KOLAR-JURKOVŠEK, T. (1995b): Paleozojske stijene niskog stupnja metamorfizma na jugoistočnoj strani Medvednice (sjeverozapadna Hrvatska) [Palaeozoic rocks of low metamorphic degree on the southeastern side of Medvednica (northwestern Croatia) – in Croatian].– In: VLAHOVIĆ, I. et al. (eds): 1st Croatian Geological Congress, Proceedings, 1, 71–74.

BELAK, M., SLOVENEC, D., KOLAR-JURKOVŠEK, T., GARAŠIĆ, V., PÉCSKAY, Z., TIBLJAŠ, D & MIŠUR, I. (2022): Low-grade metamorphic rocks of the Tethys subduction–collision zone in the Medvednica Mt. (NW Croatia).– Geologica Carpathica, 73, 3, 207–229. doi: 10.31577/GeolCarp.73.3.3

BHATIA, M.R. & CROOK, K.A.W. (1986): Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins.– Contributions to Mineralogy and Petrology, 92, 181–193.

BOYNTON, W.V. (1984): Geochemistry of the rare earth elements: meteorite studies.– In: HENDERSON, P. (ed.): Rare earth element geochemistry, Elsevier, Amsterdam, 63–114.

BOROJEVIĆ ŠOŠTARIĆ, S., NEUBAUER, F., ROBERT, H. & PALINKAŠ, A.L. (2012): Tectonothermal history of the basement rocks within the NW Dinarides: new 40Ar/39Ar ages and synthesis.– Geologica Carpathica, 63, 441–452. doi: 10.2478/v10096-012-0034-2

BUCHER, K. & GRAPES, R. (2011): Petrogenesis of Metamorphic Rocks.– Springer-Verlag Berlin Heidelberg, 419. doi: 10.1007/978-3-540-74169-5

CADDICK, M.J. & THOMPSON, A.B. (2008): Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: mineral composition in equilibrium.– Contributions to Mineralogy and Petrology, 156, 177–195. doi: 10.1007/s00410-008-0280-6

CAMILLERI, P.A. (2018): Classification, Character, and Origin of Textural Zoning in Porphyroblasts: Significance and Relation to Strain.– Journal of the Tennessee Academy of Science, 93, 1-2, 50–60.

CASTELLANOS-ALARCÓN, O.M., RÍOS-REYES, C.A. & GARCÍA-RAMÍREZ, C.A., (2016): Occurrence of chloritoid-bearing metapelitic rocks and their significance in the metamorphism of the Silgará Formation at the Central Santander Massif.– Boletín de Ciencias de la Tierra, 40, 5-15. doi: 10.15446/rbct.n40.48416

CHAUVENET, W. (1863): A Manual of Spherical and Practical Astronomy, Vol. 2.– J. B. Lippincott Company, Philadelphia, PA.

CONNOLLY, J.A.D. (1990): Multivariable phase-diagrams— an algorithm based on generalised thermodynamics.– American Journal of Science, 290, 666–718.

CONNOLLY, J.A.D. (2005): Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation.– Earth and Planetary Science Letters, 236, 524–541. doi: 10.1016/j.epsl.2005.04.033

CONNOLLY, J.A.D. & PETRINI, K. (2002): An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions.– Journal of Metamorphic Geology, 20/7, 697–708. doi: 10.1046/j.1525-1314.2002.00398.x

CSONTOS, L. & NAGYMAROSY, A. (1998): The Mid-Hungarian line: a zone of repeated tectonic inversions.– Tectonophysics, 297/1, 51–71. doi: 10.1016/S0040-1951(98)00163-2

CULLERS, R.L. (1994a): The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, Colorado, USA.– Chemical Geology, 113, 327–343. doi: 10.1016/0009-2541(94)90074-4

CULLERS, R.L. (1994b): The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA.– Geochimica et Cosmochimica Acta, 58, 4955–4972. doi: 10.1016/0016-7037(94)90224-0

CULLERS, R.L. (2000): The geochemistry of shales, siltstones and sand stones of Pennsylvanian - Permian age, Colorado, USA: implications for provenance and metamorphic studies.– Lithos, 51, 181–203. doi: 10.1016/50024-4937(99)0063-8

CULLERS, R.L. (2002): Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA.– Chemical Geology, 191, 305–327. doi: 10.1016/S0009-2541(02)00133-X

DIMO-LAHITTE, A., MONIE, P. & VERGELY, P. (2001): Metamorphic soles from the Albanian ophiolites: Petrology, 40Ar/39Ar geochronology, and geodynamic evolution.– Tectonics, 20, 78–96. doi: 10.1029/2000TC900024

ĐURĐANOVIĆ, Ž. (1973): O paleozoiku i trijasu Medvednice (Zagrebačke gore) i područja Dvora na Uni na temelju konodonata [On the Palaeozoic and Triassic of Medvednica (Zagrebačke gora) and the Dvor na Una area based on conodonts (in Croatian)].– Geološki vjesnik, 25, 29–49.

FINGER, F. & KRENN, E. (2007): Three metamorphic monazite generations in a highpressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop.– Lithos, 95, 103–115. doi: 10.1016/j.lithos.2006.06.003

FLOYD, P.A. & LEVERIDGE, B.E. (1987): Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.– Journal of the Geological Society of London, 144, 531–542. doi: 10.1144/gsjgs.144.4.0531

FODOR, L., JELEN, B., MÁRTON, E., SKABERNE, D., ČAR. J. & VRABEC, M. (1998): Miocene‐Pliocene tectonic evolution of the Slovenian Periadriatic fault: Implications for Alpine‐Carpathian extrusion models.– Tectonics, 17/5, 690–709. doi: 10.1029/98TC01605

FOSTER, M.D. (1962): Interpretation of the composition and a classification of the chlorites.– U.S. Geological Survey Professional Paper, 414, 1–33.

FRANZ, G., ANDREHS, G., & RHEDE, D. (1996): Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany.– Eur. J. Mineral. 8, 1097–1118. doi: 10.1127/ejm/8/5/1097

FRANCESCHELLI, M. & MEMMI, I. (1999): Zoning of chloritoid from kyanite-facies metapsammites, Alpi Apuane, Italy.– Mineralogical Magazine, 63/1, 105–110. doi: 10.1180/minmag.1999.063.1.10

FUHRMAN, M.L. & LINDSLEY, D.H. (1988): Ternary-feldspar modelling and thermometry.– Am. Mineral., 73, 201–215.

HAAS, J., MIOČ, P., PAMIĆ, J., TOMLJENOVIĆ, B., ÁRKAI, P., BÉRCZI-MAKK, A. & RÁLISCH-FELGENHAUER, E. (2000): Complex structural pattern of the Alpine–Dinaridic–Pannonian triple junction.– International Journal of Earth Sciences, 89/2, 377–389. doi: 10.1007/s005310000093

HEINRICH, W., ANDREHS, G., & FRANZ, G. (1997): Monazite-xenotime miscibility gap thermometry. I. An empirical calibration.– J. Metamorph. Geol., 15, 3–16. doi: 10.1111/j.1525-1314.1997.t01-1-00052.x

INOUE, A., INOUE, S. & UTADA, M. (2018): Application of chlorite thermometry to estimation of formation temperature and redox conditions.– Clay Minerals, 53, 143–158. doi: 10.1180/clm.2018.10

JANOUŠEK, V., FARROW, C.M. & ERBAN, V. (2006): Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit).– Journal of Petrology, 47/6, 1255–1259. doi: 10.1093/petrology/egl013

JUDIK, K., ÁRKAI, P., HORVÁTH, P., et al. (2004): Diagenesis and low-temperature metamorphism of Mt. Medvednica, Croatia: Mineral assemblages and phyllosilicate characteristics.– Acta geologica Hungarica, 47, 151–176. doi: 10.1556/AGeol.47.2004.2-3.5

JUDIK, K., BALOGH, K., TIBLJAŠ, D. & ÁRKAI, P. (2006): New age data on the lowtemperature regional metamorphism of Mt. Medvednica (Croatia).– Acta geologica Hungarica, 49, 207–221. doi: 10.1556/AGeol.49.2006.3.2

JUDIK, K., RANTITSCH, G., RAINER, T.M., et al. (2008): Alpine metamorphism of organic matter in metasedimentary rocks from Mt. Medvednica (Croatia).– Swiss Journal of Geosciences, 101, 605–616. doi: 10.1007/s00015-008-1303-z

KARAMATA, S. (2006): The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwana and Eurasian units.– In: ROBERTSON, AHF & MOUNTRAKIS, D. (eds.): Tectonic development of the Eastern Mediterranean Region.– Geological Society, London, Special Publications, 260, 155–178.

KOROKNAI, B., HORVÁTH, P. & NÉMETH, T. (2001): Chloritoid schist from the Uppony Mts (NE Hungary): Mineralogical, petrological and structural data from a new occurrence.– Acta Geologica Hungarica, 44/1, 47–65.

LANPHERE, M.A., COLEMAN, R.G., KARAMATA, S. & PAMIĆ, J. (1975): Age of amphibolites associated with alpine peridotites in the Dinaride ophiolite zone, Yugoslavia.– Earth and Planetary Science Letters, 26, 271–276. doi: 10.1016/0012-821X(75)90001-1

LI, B., MASSONNE, H.-J., KOLLER, F. & ZHANG, J.-F. (2021): Metapelite from the high-ultrahigh pressure terrane of the Eastern Alps (Pohorje Mts., Slovenia) – new pressure, temperature, and time constraints on a polymetamorphic rock.– Journal of Metamorphic Geology, 39/6, 695-726. doi: 10.1111/jmg.12581

LO PÒ, D. & BRAGA, R. (2014): Influence of ferric iron on phase equilibria in greenschist facies assemblages: The hematite-rich metasedimentary rocks from the Monti Pisani (Northern Apennines).– Journal of Metamorphic Geology, 32, 371–387. doi: 10.1111/jmg.12076

LUGOVIĆ, B., ŠEGVIĆ, B. & ALTHERR, R. (2006): Petrology, geochemistry and tectonic significance of the orthogreenschists from the SW Zagorje-Mid-Transdanubian Zone (Medvednica Mts, Croatia).– Ofioliti, 31/1, 39–50.

MASSONNE, H.-J. (2012): Formation of amphibole and clinozoisite-epidote in eclogite owing to fluid infiltration during exhumation in a subduction channel.– Journal of Petrology, 53, 1969–1998. doi: 10.1093/petrology/egs040

MASSONNE, H.-J. (2014): Wealth of P–T–t information in medium-high grade metapelites: example from the Jubrique Unit of the Betic Cordillera, S. Spain.– Lithos, 208-209, 137–157. doi: 10.1016/j.lithos.2014.08.027

MASSONNE, H.-J. & SCHREYER, W. (1989): Stability field of the high- pressure assemblage talc + phengite and two new phengite barometers.– European Journal of Mineralogy, 1, 391–410. doi: 10.1127/ejm/1/3/0391

MASSONNE, H.-J. & SZPURKA, Z. (1997): Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-SiO2-H2O and K2O-FeO-Al2O3-SiO2-H2O.– Lithos, 41, 229–250. doi: 10.1016/S0024-4937(97)82014-2

MASSONNE, H.-J., DRISTAS, J.A. & MARTÍNEZ, J.C. (2012): Metamorphic evolution of the Río de la Plata craton in the Cinco Cerros area, Buenos Aires Province, Argentina.– Journal of South American Earth Sciences, 38, 57–70. doi: 10.1016/j.jsames.2012.05.005

McLENNAN, S.M., (2001): Relationships between the trace element composition of sedimentary rocks and upper continental crust.– Geochemistry Geophysics Geosystems, 2, 1021. doi:10.1029/2000GC000109

McLENNAN, S.M. & TAYLOR, S.R. (1991): Sedimentary rocks and crustal evolution: tectonic setting and secular trends.– J. Geol., 99, 1–21. doi: 10.1086/629470

MIŠUR, I. (2017): Geodinamska evolucija metasedimentnih stijena niskog stupnja metamorfizma na Medvednici [Geodynamic evolution of low grade metasedimentary rocks on the Mt. Medvednica.– in Croatian, with an English Abstract].– Unpubl. PhD Thesis, Faculty of Science, University of Zagreb, 215 p.

MIŠUR, I., BELAK, M. & BALEN, D. (2013): Petrographic features of chloritoid schist from southeastern slopes of Mt. Medvednica, (Zagorje-Mid-Transdanubian zone, Croatia).–In: SCHUSTER, R. (ed.): 11th Workshop on Alpine Geological Studies and 7th European Symposium on Fossil Algae, Abstracts & Field Guides. Wien, Geologische Bundesanstalt, 66–67.

MIŠUR, I., BELAK, M., KLÖTZLI, U. & BALEN, D. (2015): Evidence from chloritoid schists for muli-stage metamorphism in the Mt. Medvednica area (Zagorje Mid Transdanubian zone, N Croatia).– In: KOLLER, F., KOLITSCH, U. & TESSADRI, R. (eds.): MinPet2015, Mitteilungen Österreichischen Minerogischen Gesellschaft,
161, 89-89.

MONTEL, J., FORET, S., VESCHAMBRE, M., NICOLLET, C. & PROVOST, A. (1996): Electron microprobe dating of monazite.– Chemical Geology, 131, 37–53. doi: 10.1016/0009-2541(96)00024-1

MPOSKOS, E. (1989): High-pressure metamorphism in gneisses and pelitic schists in the East Rhodope zone (N. Greece).– Mineralogy and Petrology, 41, 25–39. doi:10.1007/bf01164808

OKRUSCH, M., SEIDEL, E., KREUZER, H. & HARRE, W. (1978): Jurassic age of metamorphism at the base of the Brezovica peridotite (Yugoslavia).– Earth and Planetary Science Letters, 39, 291–297. doi: 10.1016/0012-821X(78)90205-4

ONDREJKA, M., UHER, P., PUTIŠ, M., BROSKA, I., BAČÍK, P., KONEČNÝ, P. & SCHMIEDT, I. (2012): Two stage breakdown of monazite by post-magmatic and metamorphic fluids: an example from the Veporic orthogneiss, Western Carpathians, Slovakia.– Lithos 142–143, 245–255. doi: 10.1016/j.lithos.2012.03.012

PAMIĆ, J. (1984): Triassic magmatism of the Dinarides in Yugoslavia.– Tectonophysics, 109/3–4, 273–307.

PAMIĆ, J. (2002): The Sava-Vardar Zone of the Dinarides and Hellenides versus the Vardar Ocean.– Eclogae Geologicae Helvetiae, 95, 99–113.

PAMIĆ, J. & TOMLJENOVIĆ, B. (1998): Basic geological data from the Croatian part of the Zagorje-Mid-Transdanubian zone.– Acta Geologica Hungarica, 41(4), 389–400.

PARRISH, R.R. (1990): U-Pb dating of monazite and its application to geological problems.– Canadian Journal of Earth Sciences, 27, 1431–1450. doi: 10.1139/e90-152

PARRY, W.T., BALLANTYNE, J.M. & JACOBS, D.C. (1984): Geochemistry of hydrothermal sericite from Roosevelt Hot Springs and the Tintic and Santa Rita porphyry copper systems.– Econ. Geol. 79, 72–86. doi: 10.2113/gsecongeo.79.1.72.

PASSCHIER, C.W. & TROUW, R.A.J. (2005): Microtectonics.– Heidelberg, Springer-Verlag Berlin, 366 p. doi: 10.1007/978-3-662-08734-3

PORKOLÁB, K., DURETZ, T., YAMATO, P., AUZEMERY, A. & WILLINGSHOFER, E. (2021): Extrusion of subducted crust explains the emplacement of far-travelled ophiolites.– Nature Communications, 12, 1499. doi: 10.1038/s41467-021-21866-1

POUCHOU, J.L. & PICHOIR, F. (1984): A new model for quantitative analysis: Part I. Application to the analysis of homogeneous samples.– LaRecherche Aerospatiale, 3, 13–38.

POUCHOU, J.L. & PICHOIR, F. (1991): Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”.– In: HEINRICH, K.F.J. & NEWBURY, D.E. (ed), Electron Probe Quantitation, Plenum, New York, 31–75. doi: 10.1007/978-1-4899-2617-3_4

PYLE, J.M., SPEAR, F.S., RUDNICK, R.L. & MCDONOUGH, W.F. (2001): Monazite–xenotime–garnet equilibria in metapelites and a new monazite–garnet thermometer.– Journal of Petrology, 42, 2083–2107. doi: 10.1093/Petrology/42.11.2083

ROBERTSON, A (2004): Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions.– Earth-Science Reviews, 66, 331–387. doi: 10.1016/j.earscirev.2004.01.005

SCHEFER, S., EGLI, D., MISSONI, S., BERNOULLI, D., FÜGENSCHUH, B., GAWLICK, H.-J., JOVANOVIĆ, D., KRYSTYN, L., LEIN, R., SCHMID, S.M. & SUDAR, M.N. (2010): Triassic metasediments in the internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, Palaeogeographic and tectonic significance.– Geologica Carpathica 61, 89–109. doi: 10.2478/v10096-010-0003-6

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine- Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units.– Swiss Journal of Geosciences, 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., GEORGIEV, N., KOUNOV, A., MATENCO, L., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., USTASZEWSKI, K. & VAN HINSBERGEN, D. (2016): Map of the Tectonic units of the Alpine collision zone between Eastern Alps and Western Turkey.

SCHMID, S.M., FÜGENSCHUH, B., KOUNOV, A., MATENCO, L., NIEVERGELT, P., OBERHÄNSLI, R., PLEUGER, J., SCHEFER, S., SCHUSTER, R., TOMLJENOVIĆ, B., USTASZEWSKI, K. & VAN HINSBERGEN, D.J.J. (2020): Tectonic units of the Alpine collision zone between Eastern Alps and Western Turkey.– Gondwana Research, 78, 308–374. doi: 10.1016/

SCHULZ, B. (2021): Monazite Microstructures and Their Interpretation in Petrochronology.– Frontiers in Earth Science, 9, 668566. doi: 10.3389/feart.2021.668566

SLOVENEC, D., LUGOVIĆ, B. & VLAHOVIĆ, I. (2010): Geochemistry, petrology and tectonomagmatic significance of basaltic rocks from the ophiolite mélange at the NW External-Internal Dinarides junction (Croatia).– Geologica Carpathica, 61, 4, 273–292. doi: 10.2478/v10096-010-0016-1

SLOVENEC, D., ŠEGVIĆ, B., HALAMIĆ, J., GORIČAN, Š. & ZANONI, G. (2020): An ensialic volcanic arc along the northwestern edge of Palaeotethys—Insights from the Mid‐Triassic volcanosedimentary succession of Ivanščica Mt. (northwestern Croatia).– Geological Journal, 55, 4324–4351. doi: 10.1002/gj.3664

SPEAR, F.S. (1995): Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Monograph 1 (2nd reprinted edition).- Mineralogical Society of America, Chantilly, Virginia, 799.

SPEAR, F. S. & PYLE, J. M. (2002): Apatite, monazite and xenotime in metamorphic rocks.– Rev. Mineral. Geochem. 48, 293–335. doi: 10.1515/9781501509636-010

STIPP, M., STÜNITZ, H., HEILBRONNER, R. & SCHMID, S. M. (2002): Dynamic recrystallisation of quartz: Correlation between natural and experimental conditions.– In: S. De MEER et al. (eds.): Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geol. Soc. Spec. Publ., 200, 171 – 190.

SUZUKI, K & KATO, T (2008): CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data.– Gondwana Research, 14, 569–586. doi: 10.1016/

ŠEGVIĆ, B., KUKOČ, D., DRAGIČEVIĆ, I., VRANJKOVIĆ, A., BRČIĆ, V., GORIČAN, Š., BABAJIĆ, E. & HRVATOVIĆ, H. (2014): New record of Middle Jurassic radiolarians and evidence of Neotethyan dynamics documented in a mélange from the Central Dinaridic Ophiolite Belt (CDOB, NE Bosnia and Herzegovina).– Ofioliti, 39, 33–43. doi: 10.4454/ofioliti.v39i1.427

ŠEGVIĆ, B., SLOVENEC, D., ALTHERR, R., BABAJIĆ, E., MÄHLMANN, R.F. & LUGOVIĆ, B. (2019): Petrogenesis of high-grade metamorphic soles from the Central Dinaric Ophiolite belt and their significance for the Neotethyan evolution in the Dinarides.– Ofioliti, 44, 1–30. doi:10.4454/ofioliti.v44i1.462

ŠEGVIĆ, B., SLOVENEC, D., SCHUSTER, R., BABAJIĆ, E., BADURINA, L. & LUGOVIĆ, B. (2020): Sm-Nd geochronology and petrologic investigation of a sub-ophiolite metamorphic sole from the Dinarides (Krivaja-Konjuh Ophiolite Complex, Bosnia and Herzegovina).– Geologia Croatica, 73/2, 119–130. doi: 10.4154/gc.2020.09

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1978): Osnovna geološka karta SFRJ, list Zagreb 1:100.000 L 33-80 [Basic Geological Map of SFRY 1:100000, Zagreb sheet – in Croatian].– Institut za geološka istraživanja, Zagreb, Savezni geološki zavod Beograd.

ŠIKIĆ, K., BASCH, O. & ŠIMUNIĆ, A. (1979): Tumač osnovne geološke karte SFRJ 1:100.000 L 33-80, list Zagreb [Basic Geological Map of SFRY 1:100000, Geology of the Zagreb sheet – in Croatian].– Institut za geološka istraživanja, Zagreb, Savezni geološki zavod Beograd.

TAYLOR, S.R. & MCLENNAN, S.M. (1995): The geochemical evolution of the continental crust.– Reviews of Geophysics, 33/2, 241–265. doi: 10.1029/95RG00262

TISCHENDORF, G., FÖRSTER, H.J., GOTTESMANN, B., RIEDER, M., (2007): True and brittle micas: composition and solid-solution series.– Mineralogical Magazine, 71/3, 285–320. doi: 10.1180/minmag.2007.071.3.285.

TOLJIĆ, M., MATENCO, L., DUCEA, M.N., STOJADINOVIĆ, U., MILIVOJEVIĆ, J. & ĐERIĆ, N. (2013): The evolution of a key segment in the Europe-Adria collision: The Fruška Gora of northern Serbia.– Global Planet. Change, 103, 39–62. doi: 10.1016/j.gloplacha.2012.10.009

TOMLJENOVIĆ, B. (2002): Strukturne značajke Medvednice i Samoborskog gorja [Structural Characteristics of Medvednica and Samoborsko Gorje Mountains – in Croatian, with an English Abstract].– Unpubl. PhD Thesis, Faculty of Science, University of Zagreb, Faculty of Mining, Geology and Petroleum engineering. 208 p.

TOMLJENOVIĆ, B., CSONTOS, L., MÁRTON, E. & MÁRTON, P. (2008): Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia.– Geological Society London, Special Publications, 298, 145–167. doi: 10.1144/SP298.8

USTASZEWSKI, K., SCHMID, S.M., FÜGENSCHUH, B., TISCHLER, M., KISSLING, E. & SPAKMAN, W. (2008): A map-view restoration of the Alpine- Carpathian-Dinaridic system for the Early Miocene.– Swiss Journal of Geosciences, 101/1, 273–294. doi: 10.1007/s00015-008-1288-7

USTASZEWSKI, K., SCHMID, S.M., LUGOVIĆ, B., SCHUSTER, R., SCHALTEGGER, U., BERNOULLI, D., HOTTINGER, L., KOUNOV, A., FÜGENSCHUH, B. & SCHEFER, S. (2009): Late Cretaceous intra-oceanic magmatism in the Internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates.– Lithos, 108/1–4, 106–125. doi: 10.1016/j.lithos.2008.09.010

VAN GELDER, I.E., MATENCO, L., WILLINGSHOFER, E., TOMLJENOVIĆ, B., ANDRIESSEN, P.A.M., DUCEA, M.N. & GRUIĆ, A. (2015): The tectonic evolution of a critical segment of the Dinarides‐Alps connection: Kinematic and geochronological inferences from the Medvednica Mountains, NE Croatia.– Tectonics, 34/9, 1952–1978. doi: 10.1002/2015TC003937

VERMEESCH, P. (2018): IsoplotR: a free and open toolbox for geochronology.– Geoscience Frontiers, v.9, 1479–1493. doi: 10.1016/j.gsf.2018.04.001

VERNON, R. H. (2004): A practical guide to rock microstructure.– Cambridge University Press, Cambridge, 594. doi: 10.1017/CBO9780511807206

VIDAL, O., GOFFÉ, B., BOUSQUET, R. & PARRA, T. (1999): Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite.– Journal of Metamorphic Geology, 17, 25–39. doi: 10.1046/j.1525-1314.1999.00174.x

VIDAL, O., LANARI, P., MUNOZ, M., BOURDELLE, F. & DE ANDRADE, V. (2016): Deciphering temperature, pressure, and oxygen activity conditions of chlorite formation.– Clay Minerals, 51, 615–633. doi: 10.1180/claymin.2016.051.4.06

VRAGOVIĆ, M. & MAJER, V. (1979a): Kloritoidni škriljci u metamorfnim kompleksima u sjevernoj Hrvatskoj (Jugoslavija) [Chloritoid schists in metamorphic complexes in northern Croatia (Yugoslavia)(in Croatian)].– Geološki vijesnik, 31, 287–294.

VRAGOVIĆ, M. & MAJER,V. (1979b): Prilozi za poznavanje metamorfnih stijena Zagrebačke gore, Moslavačke gore i Papuka (Hrvatska, Jugoslavija)[Contributions to the knowledge of metamorphic rocks of Zagrebačka Mt., Moslavačka Mt. and Papuk Mt. (Croatia, Yugoslavia)(in Croatian)].– Geol. vjesnik, 31, 295–308.

WILLIAMS, M., JERCINOVIC, M.J. & HETHERINGTON, C.J. (2007): Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology.– Annual Review of Earth and Planetary Sciences, 35, 137–175. doi: 10.1146/

WHITE, R.W., POWELL, R., HOLLAND, J.B., JOHNSON, T.E. & GREEN, E.C.R. (2014): New mineral activity–composition relations for thermodynamic calculations in metapelitic systems.– Journal of Metamorphic Geology, 32, 261–286. doi: 10.1111/jmg.12071

ZANE, A. & WEISS, Z. (1998): A procedure for classifying rock-forming chlorites based on microprobe data.– Rendiconti Lincei, 9, 51–56. doi: 10.1007/BF02904455