First occurrence of dumortierite in Croatia: its chemical composition and appearance as an igneous mineral in leucogranite-hosted pegmatite

Main Article Content

Vesnica Garašić
Boško Lugović †
Mirjana Krsnik
Šime Bilić
Hans-Peter Meyer
Ralf Schuster
Maja Vrkljan

Abstract

In this article, dumortierite from Croatia is described for the first time. Dumortierite formed in a pegmatite dyke cutting through Cretaceous two-mica leucogranite of the magmatic-metamorphic complex of Mt. Moslavačka  Gora. The pegmatite dyke shows a magmatic mineral association of coarse-grained quartz, orthoclase,  microcline and albite, less abundant muscovite, biotite, pinkish andalusite and blue-coloured prismatic  dumortierite I crystals. Subsequent alteration by titanium-rich hydrothermal fluids led to partial replacement of dumortierite I and andalusite by secondary fibrous to acicular purple dumortierite II enriched in Mg and Ti.  During temperature decrease perthite developed in feldspars and at a still later stage, sericite partially replaced not only feldspars but also andalusite and both types of dumortierite along grain boundaries and cracks. Final  alteration at very low temperatures caused formation of clay minerals at the expense of feldspars. According to  mineral chemical analyses, the feldspars are represented by albite and K-feldspar with a low albite component. Biotite corresponds to annite and its subhedral shape and chemical composition point to magmatic  crystallisation from a peraluminous melt derived from a crustal source. Coarse muscovite flakes contain 1.31-1.48 wt.% FeO and 0.56-0.70 wt.% TiO2. Their Na/(Na+K) ratios (0.08–0.09) prove a magmatic origin, whereas lower ratios in sericite (0.04–0.06) indicate formation during retrogression. Magmatic muscovite is in textural equilibrium with andalusite, also implying an igneous origin for the latter, which belongs to the S3 textural type of andalusite in felsic igneous rocks. Electron microprobe analyses clearly show a strong positive correlation between Si tetrahedral deficiency (3-Si) and the sum of Al+Ti, (R2= 0.85) in both types of dumortierite, implying Al replacement by Ti. However, Al replacement by Ti is not restricted to Al in the octahedral position, as generally accepted, but most probably also in the tetrahedral position. Distinct pleochroic colours in dumortierite are  usually explained by the [Fe/(Fe+Ti)]x100 factor, but according to this study, elevated Mg contents stabilize red to violet coloured dumortierite at higher [Fe/(Fe+Ti)] x100 factors than those previously suggested.


Dumortierite-bearing pegmatite and host two-mica leucogranite show strong chemical similarities in their major, minor and  trace element contents. Both rock types have a strong peraluminous character (ASI = 1.6 in pegmatite vs 1.8 in leucogranite), low CaO/Na2O ratios (0.11 vs 0.14), high Rb/Ba (74.5 vs 16.4) and Rb/Sr ratios  (78.4 vs 43.3) as well as relatively high Al2O3/TiO2 ratios (261 vs 210). For the leucogranitic melt these  characteristics indicate derivation from a pelitic source and low melting rates at relatively low temperatures.  With respect to the field relationships and the chemical similarities, formation of the pegmatitic melt by fractional crystallisation during solidification of the two-mica leucogranite is inferred. Based on the mineralogical composition, the dumortierite-bearing pegmatite from Mt. Moslavačka Gora may be a member of the abyssal pegmatite class and the AB-BBe subclass. However, its formation by fractional crystallisation from a  granitic melt argues against this interpretation, as all other dumortierite-bearing granitic pegmatites occur in  high-grade metamorphic host rocks and are thought to be products of anatectic melting of country rocks.  Therefore, the investigated pegmatite is quite unique and not fully comparable with any previously described  dumortierite-bearing pegmatite worldwide. 

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers
Author Biography

Vesnica Garašić, University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Zagreb, Croatia

Zavod za mineralogiju, petrologiju i mineralne sirovine

References

ABDEL-RAHMEN, A.F.M. (1994): Nature of biotites from alkaline, calc-alkaline and peraluminuous magmas.– Journal of Petrology, 35, 525–541.

ALEXANDER, V.D., GRIFFEN, D.T. & MARTIN, T.J. (1986): Crystal chemistry of some Fe- and Ti-poor dumortierites.– American Mineralogist, 71, 786–794.

BARIĆ, LJ. (1972): Kontaktnometamorfni mramori iz okolice Podgarića u Moslavačkoj gori (Hrvatska) [Contact metamorphic marbles from the surrounding area of Podgarić in Mt. Moslavačka Gora (Croatia) – in Croatian].– VII kongres geologa SFRJ, 2, 1–28.

BALEN, D. (2007): Tourmaline nodules occurrence in Moslavačka Gora (Croatia) granite: a snapshot of magmatic processes.– In: TOMLJENOVIĆ, B., BALEN, D. & VLAHOVIĆ, I. (eds.): 8th Workshop on Alpine Geological studies: Abstract volume. Croatian Geological Survey, Zagreb, 3–3.

BALEN, D., BELAK, M., TIBLJAŠ, D. & TOMAŠIĆ, N. (2000): The succession of metamorphic paragneisses in mineral assemblage from marble – Zorovac Creek (Moslavačka gora, Northern Croatia).– In: VLAHOVIĆ, I. & BIONDIĆ, R. (eds.): Proceedings of the 2nd Croatian Geological Congress. Institute of Geology, Zagreb, 93–96.

BALEN, D., SCHUSTER, R. & GARAŠIĆ, V. (2001): A new contribution to the geochronology of Mt. Moslavačka Gora (Croatia).– In: ÁDAM, A., SZARKA, L., SZENDRὅI, J. (eds): PANDCARDI 2001. II. Abstracts, 2–3.

BALEN, D., SCHUSTER, R., GARAŠIĆ, V. & MAJER, V. (2003): The Kamenjača olivine gabbro from Moslavačka gora (South Tisia, Croatia).– Rad Hrvatske akademije znanosti i umjetnosti, 486, Knjiga 27, 57–76.

BALEN, D. & PETRINEC, Z. (2010): Complex Cretaceous evolution of the Moslavačka Gora crystalline: different aspects from various types of „foreign“ and „cognate“ enclaves inside granites.– In: HORVAT, M. (ed)., 4th Croatian Geological Congress, Abstracts Book. Croatian Geological Survey, Zagreb, 135–136.

BALEN, D. & BROSKA, I. (2011): Tourmaline nodules – products of devolatilization within the final evolutionary stage of granitic melt?– In: SIAL, A.N., BETTANCOURT, J.S., DE CAMPOS. C.P., FERREIRA, V.O. (eds.): Granite-Related-Ored deposits Geological society, London special Publications 350, 53–68. doi: 10.1144/SP350.4

BALEN, D. & PETRINEC, Z. (2011): Contrasting tourmaline types from peraluminous granites: a case study from Moslavačka Gora (Croatia).– Miner. Petrol. 102, 117–134. doi: 10.1007/s00710-011-0164-8

BLACK, P.M. (1973): Dumortierite from Karikari peninsula: a first record in New Zealand.– Mineralogical Magazine, 39, 245. doi: 10.1180/minmag.1973.039.302.14

BURT, D. & STUMF, E. (1983): Mineralogical investigation of andalusite-rich pegmatites from Szabo Bluff, Scott Glacier area.- Antarctic Journal of the United States, 18, 5, 49–52.

CHOO, C.O. & KIM, Y. (2003): Textural and spectroscopic studies on hydrothermal dumortierite from an Al-rich clay deposit, southeastern Korea.– Mineralogical Magazine, 67/4, 799–806. doi: 10.1180/0026461036740136

CLARINGBULL, G.F. & HEY, M.H. (1958): New data for dumortierite.– Mineral. Magazine, 31, 901–907. doi: 10.1180/minmag.1958.031.242.02

CLARKE, D.B., DORAIS, M., BARBARIN, B., BARKER, D., CESARE, B., CLARKE, G., BAGHDADI, M.E., ERDMANN, S., FÖRSTER, H.-J., GAETA, M., GOTTESMANN, B., JAMIESON, R.A., KONTAK, D.J., KOLLER, F., GOMES, C.L., LONDON, D., MORGAN VI, G.B., NEVES, L.J.P.F., PATTISON, D.R.M., PEREIRA A.J.S.C., PICHAVANT, M., RAPELA, C.W. RENNO, A.D., RICHARDS, S., ROBERTS, M., ROTTURA, A., SAAVEDRA, J., SIAL A.N., TOSELLI, A.J., UGIDOS, J.M., UHER, P., VILLASECA, C., VISONA, D., WHITNEY. D.L., WILLIAMSON, B. & WOODARD, H.H. (2005): Occurrence and origin of andalusite in peraluminous felsic igneou rocks.– Journal of Petrology, 46/3, 441–472.

COHEN, E. (1887): Andalusitführende granite.– Neues Jahrb. Min. Geol. Paleont., 2, 178–180.

CRNKO, J. (1990): Osnovna geološka karta Republike Hrvatske 1:100 000, list Kutina L 33-90. [Basic Geological Map of the Republic of Croatia, scale 1 : 100.000, sheet Kutina L33-94 – in Croatian].– Hrvatski geološki institut (Zavod za geologiju) Zagreb, 2014.

CRNKO, J. & VRAGOVIĆ, M. (1990): Osnovna geološka karta Republike Hrvatske 1:100.000. Tumač za list Kutina L 33-94. [Basic Geological Map of the Republic of Croatia, scale 1 : 100.000, Interpreter for sheet Kutina L33-94 – in Croatian].– Hrvatski geološki institut (Zavod za geologiju) Zagreb, 2014. 75 p.

ČEMPIREK, J. & NOVAK, M. (2006): Mineralogy of dumortierite-bearing abyssal pegmatites at Starkoč and Bestvina, Kutna Hora Crystalline Complex.– Journal of the Czech Geological Society, 1/3–4, 259–270.

ČERNÝ, P. & ERCIT, T.S. (2005): The classification of granitic pegmatites revisited.– The Canadian Mineralogist, 43, 2005–2026. doi: 10.2113/gscanmin.43.6.2005

ČERNÝ, P., LONDON, D. & NOVAK, M. (2012): Granitic pegmatites as reflections of their sources.– Elements, 8, 289–294. doi: 10.2113/gselements.8.4.289

DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1982): An introduction to the rock-forming Minerals, Orthosilicates.– Longman, 936 p.

DOKUKINA, K.A., KONILOV, A.N., VAN, K.V. & MINTS, M.V. (2017): Dumortierite-and corundum-bearing quartz-feldspar-mica rocks of the Belomorian eclogite province: an example of melting of phengite + quartz.– Doklady Earth Sciences, 477/1, 1353–1357. doi: 10.1134/S1028334X17110204

EVANS, R.J., FYFE, C.A., GROAT, L.A. & LAM, A.E. (2012): MAS NMR measurements and ab initio calculations of the 29Si chemical shifts in dumortierite and holtite.– American Mineralogist, 97, 329–340. doi: 10.2138/am.2012.3880

EVANS, R.J. & GROAT, L.A. (2012): Structure and topology of dumortierite and dumortierite-like minerals.– The Canadian Mineralogist 50/5, 1197–1231.

FUCHS, Y., ERTL, A., HUGHES, J.M., PROWATKE, S., BRANDSTÄTTER, F. & SCHUSTER, R. (2005): Dumortierite from the Gföhl unit, Lower Austria: chemistry, structure, and infra-red spectroscopy.– Eur. J. Mineral. 17, 173–183. doi: 10.1127/0935-1221/2005/0017-0173

GARAŠIĆ, V. (1993): Metamorfni uvjeti stijena amfibolitnog facijesa Moslavačke gore [Metamorphic conditions of rocks of amphibolite facies of Mt. Moslavačka Gora – in Croatian].– Unpubl. Magister Thesis, Faculty of Science, University of Zagreb, 171 p.

GARAŠIĆ, V., KRŠINIĆ, A., SCHUSTER, R. & VRKLJAN, M. (2007): Leucogranite from Srednja Rijeka (Moslavačka Gora, Croatia).– In: TOMLJENOVIĆ, B., BALEN, D. & VLAHOVIĆ, I. (eds.): 8th Workshop on Alpine Geological studies: Abstract volume. Croatian Geological Survey, Zagreb, 21–21.

GOLOVASTIKOV, N.I. (1965): The crystal structure of dumortierite.– Doklady Akad. Nauk. SSSR, 162/6, 1282–1284 (in Russian, English trans., Sov. Phys. Doklady), 10, 493–495.

GONNARD, F. (1881): Note sur l'existence d'une espèce minérale nouvelle, la dumortiérite dans le gneiss de Beaunan, au-dessus des anciens aqueducs gallo-romains de la vallé de l'Izeron (Rhone).– Bull. Soc. Minéral. Fr., 4, 2–8.

GREW, E.S. (1998): Boron and beryllium minerals in granulite-facies pegmatites and implications of beryllium pegmatites or origin and evolution of the archean Napier complex of east Antarctica.–Memoirs of National Institute of Polar Research, Special Issue 53, 74–92.

GREW, E.S., HIROI, Y., MOTOYOSHI, Y., KONDO, Y., JAYATILEKE, S.J. M. & MARQUEZ, N. (1995): Iron-rich kornerupine in sheared pegmatite from the Wanni Complex, at Homagama, Sri Lanka.– Eur. J. Mineral., 7, 623–636. doi: 10.1127/ejm/7/3/0623

GROAT, L.A., EVANS, R.J., GREW, E.S. & PIECZKA, A. (2012): The crystal chemistry of As- and Sb-bearing dumortierite.– The Canadian Mineralogist, 50, 855–872. doi: 10.3749/canmin.50.4.855

HARRIS, N.B.W. & INGER, S. (1992): Trace element modelling of pelite-derived granites.– Contrib. Mineral. Petrol., 110, 46–56. doi: 10.1007/BF00310881

HENRY, D.J., GUIDOTTI, C.V. & THOMSON, J.A. (2005): The Ti-saturation surface for low-to medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanism.– Am. Miner., 90/2–3, 316–328. doi: 10.2138/am.2005.1498

HUIJSMANS, J.P.P., BARTON, M. & VAN BERGEN, M.J. (1982): A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high-grade metamorphic complex of Rogland, S.W. Norway.– Neues Jahrbuch für Mineralogie, Abhandlungen, 143, 249–261.

KIŠPATIĆ, M. (1887): Olivinski gabro iz Moslavačke gore (hiperstenit) [Olivine gabbro from the Mt. Moslavačka Gora (hyperstenite) – in Croatian].– Rad JAZU, 95, 24–51.

KHALEGL, F. (2019): Occurrence, mineral chemistry and origin of dumortierite in Ali Javad porphyry Cu-Au deposit, Sheivar Dagh alteration system, NW Iran.– Periodico di Mineralogia, 88, 131–145.

KOROLIJA, B. & CRNKO, J. (1985): Osnovna geološka karta SFRJ 1 : 100 000, list Bjelovar, L 33-82 [Basic Geological Map of SFR Yugoslavia, scale 1 : 100 000, Sheet Bjelovar, L 33-82 – in Croatian].– Hrvatski geološki institut (Zavod za geologiju), Savezni geološki zavod Beograd, 1985.

KORSAKOV, A.V., REZVUKHINA, O.V., REZVUKHIN, I., GRESHNYAKOV, E.D. & SHUR, V.Ya. (2019): Dumortierite and tourmaline from the Barchi-Kol diamond- bearing kyanite gneisses (Kokchetav massif): A Raman spectroscopic study and petrological implications.– J. Raman Sectrosc., 51, 1839–1848. doi: 10.1002/jrs.5699

MAHAPATRA, S. & CHAKRABARTY, A. (2011): Dumortierite from Susunia Hill, Bankura District, West Bengal, India.– Current Science, 100,3 299–301.

MONIER, G., MERGOIL-DANIEL, J. & LA BERNARDIE, H. (1984): Generations successives de muscovites et feldspaths potassiques dans les leucogranite du massif de Millevaches (Massif Central Francais).– Bulletin de Mineralogie, 107, 55–68.

MOORE, P.B. & ARAKI, T. (1978): Dumortierite Si3B-[Al6,75□0,25O17,25 (OH)0,75]: a detailed structure analysis.– N. Jahrb. Mineral. Abh. 132, 231–241.

NACHIT, H., IBHI, A., ABIA, E.H. & OHOUD, M.B. (2005): Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites.– Comptes Rendus Geoscience., 337, 1415–1420.

PALINKAŠ, A.L., BALOGH, K., STRMIĆ, S., PAMIĆ, J. & BERMANEC, V. (2000): Ar/Ar dating and fluid inlusion study of muscovite, from the pegmatite of Srednja Rijeka, within granitoids of Moslavačka gora Mt., North Croatia.– In: TOMLJENOVIĆ, B., BALEN, D. & SAFTIĆ, B. (eds): PANCARDI 2000, Special Issue, Vijesti Hrvatskog geološkog društva, 37, 95–96.

PAMIĆ, J. (1987): Granites and associated monzodiorites and gabbros from Kamenac Creek on Mt. Moslavačka Gora (Northern Croatia, Yugoslavia).– Rad JAZU, 431/22, 179–199.

PAMIĆ, J. (1990): Alpine granites, migmatites and metamorphic rocks from Mt. Moslavačka Gora and the surrounding basement of the Pannonian Basin (Northern Croatia, Yugoslavia).– Rad Jugoslavenske Akademije Znanosti i Umjetnosti, 10, 7–121.

PAMIĆ, J. (1998): Crystalline basement of the South Pannonian Basin based on surface and subsurface data.– Nafta, 49, 371–390.

PAMIĆ, J. & JURKOVIĆ, I. (2002): Paleozoic tectonostratigraphic units of the northwest and central Dinarides and the adjoining South Tisia.– International Journal of Earth Sciences (Geologische Rundschau), 91, 787–798.

PATTISON, D.R.M. (2001): Instability of Al2SiO5 „tripple-point“ assemblages in muscovite+biotite+quartz-bearing metapelites, with implications.- American Mineralogist, 86, 1414–1422.

PIECZKA, A., GREW, E.S., GROAT, L.A. & EVANS, R.J. (2011): Holtite and dumortierite from the Szklary Pegmatite, Lower Silesia, Poland.– Mineralogical Magazine, 75/2, 303–315. doi: 10.1180/minmag.2011.075.2.303

PUXEDDU, M. (2022): Interaction of B-rich supercritical magmatic fluids with granite: first report of dumortierite in a geothermal field, Larderello, Italy.– South Florida Journal of Development, 3/3, 3162–3169. doi: 10.46932/sfjdv3n3-009

SAMADI, R., TORABI, G., KAWABATA, H. & MILLER, K.N. (2021): Biotite as a petrogenetic discriminator: Chemical insights from igneous, meta-igneous and meta-sedimentary rocks in Iran.– Lithos, 386–387, 106016. doi: 10.1016/j.lithos.2021.106016

SCHMID, S.M., BERNOULLI, D., FÜGENSCHUH, B., MATENCO, L., SCHEFER, S., SCHUSTER, R., TISCHLER, M. & USTASZEWSKI, K. (2008): The Alpine- Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units.– Swiss J Geosci, 101, 139–183. doi: 10.1007/s00015-008-1247-3

SCHÜSSLER, U. & HENJES-KUNST, F. (1994):Petrographical and geochronological investigations on a garnet-tourmaline pegmatite from Ringgold Knoll, Oates Coast, Antarctica.– Chem. Erde, 54, 297–318.

STARIJAŠ, B., GERDES, A., BALEN, D., TIBLJAŠ, D. & FINGER, F. (2010): The Moslavačka Gora crystalline massif in Croatia: A Creataceous heat dome within remnant Ordovician granitoid crust.–Swiss J. Geosc, 103, 61–82. doi: 10.1007/s00015-010-0007-3

SYLVESTER, P.J. (1998): Post-collisional strongly peraluminous granites.– Lithos, 45, 29–44. doi: 10.1016/S0024-4937(98)00024-3

TANER, M.F. & MARTIN, R.F. (1993): Significance of dumortierite in an aluminosilicate- rich alteration zone, Louvicourt, Quebec.– Canadian Mineralogist, 31, 137–146.

TANG, P., CHEN, Y., TANG, J., WANG, Y., ZHENG, W., LENG, Y., LIN, B. & WU, C. (2019): Advances in research of mineral chemistry of magmatic and hydrothermal biotites.– Acta Geologica Sinica (English Edition), 2019, 93/6, 1947–1966. doi: 10.1111/1755-6724.14395

TUĆAN, F. (1904): Pegmatit u kristaliničnom kamenju Moslavačke gore [Pegmatite in crystalline rocks of Mt. Moslavačka Gora – in Croatian].– Rad JAZU, 159, 166–208.

TUĆAN, F. (1953): Nov prinos poznavanju kristalastih stijena Moslavačke gore [New contribution to understanding of crystalline rocks of Mt. Moslavačka Gora – in Croatian].– JAZU, Spomenica Miše Kišpatića, 39–69.

UCHIDA, E., ENDO, S. & MAKINO, M. (2007): Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits.– Resource Geology, 57/1, 47–56. doi: 10.1111/j.1751-3928.2006.00004.x

VISSER, D. & SENIOR, A. (1991): Mg-rich dumortierite in cordierite-orthoamphibolebearing rocks from the high-grade Bamble Sector, south Norway.– Mineralogical Magazine, 55, 563–577. doi: 10.1180/minmag.1991.055.381.09

VRANA, S., ŠTEDRA, V. & NAHODILOVA, R. (2009): Geochemistry and petrology of high-pressure kyanite-garnet-albite-K-feldspar felsic gneisses and granulites from the Kutna Hora Complex, Bohemian Massif.– Journal of Geosciences, 54, 159–179. doi: 10.3190/jgeosci.045

WERDING, G. & SCHREYER, W. (1983): Synthesis, crystal chemistry, and preliminary stability of dumortierite in the system SiO2-Al2O3-B2O3-H2O.– Fortschr. Min. 6/1, 219–220.

WERDING, G. & SCHREYER, W. (1990): Synthetic dumortierite: its PTX-dependent compositional variations in the system Al2O3-B2O3-SiO2-H2O.– Contrib. Mineral. Petrol., 105, 11–24. doi: 10.1007/BF00320963

WILLNER, A.P. & SCHREYER, W. (1991): A dumortierite-topaz-white mica fels from the peraluminous metamorphic suite of Bushmanland (South Africa).– N. Jb. Miner. Mh., 1991, 5, 223–240.

WISE, M.A., MÜLLER, A. & SIMMONS, W.B. (2022): A proposed new mineralogical classification system for granitic pegmatites.– The Canadian Mineralogist, 60, 229–248. doi: 10.3749/canmin.1800006

ZHOU, Z.X. (1986): The origin of intrusive mass in Fengshandong, Hubei province.– Acta Petrol. Sin., 2/1, 59–70.