Hydrochemical characterization of a Dinaric karst catchment in relation to emerging organic contaminants

Main Article Content

Ana Selak
Jasmina Lukač Reberski
Maja Briški
Lorena Selak


The main findings of a hydrochemical investigation conducted within a typical Dinaric karst catchment located  in Southern Croatia are outlined. The studied aquifer is drained by the Jadro and Žrnovnica springs, which are  important for the regional and local water supplies, respectively. Presumably, there is intercatchment  groundwater flow coming from the neighbouring Cetina River catchment. Various factors governing aquifer  hydrochemistry and their interplay with emerging organic contaminants (EOCs) that were detected at different  water resources in ng/L concentrations was assessed. A total of 26 sampling campaigns (October 2019 –  October 2022) were conducted at two springs, in a river and at a deep borehole, all representative of this  complex hydrogeological system. Assessment of major ion constituents and saturation indices calculated with  PHREEQC revealed the sampled water resources are of a Ca-HCO3 type due to the predominant weathering of  the carbonate mineral calcite. Sharp spikes observed in chemographs indicated a highly karstified system with  an effective conduit network allowing rapid spring responses to precipitation events. Water resources are of  good chemical status, as affirmed by anthropogenic contamination indicators, with nitrates, chlorides and  sulphates all below maximum threshold values. Strong positive correlations were found between EOCs  concentration, number of detected compounds, and nitrates in the Cetina River, indicating a common origin,  most likely wastewater. Identification of persistent EOCs including widely used repellent N,N-diethyl- metatoluamide (DEET) during base flow conditions and its strong positive correlation with the Ca2+ content in  both the Cetina and Jadro samples, suggests potential storage in the epikarst and aquifer matrix. This coupling  of conventional hydrochemical indicators and novel markers of anthropogenic impacts, including EOCs, in  vulnerable karst water resources is a crucial advancement in the assessment and management of emerging  environmental and potential human health risks. Such an approach is pivotal for the sustainable protection of hydrogeologically intricate sites. 


Download data is not yet available.

Article Details

Original Scientific Papers


APPELO, C.A.J., & POSTMA, D. (2005): Geochemistry, groundwater and pollution.– 2nd ed., A.A. Balkema publishers, 672 p.

BONACCI, O., & ANDRIĆ, I. (2015): Karst spring catchment: an example from Dinaric karst.– Environ Earth Sci, 74/7, 6211–6223. doi: 10.1007/s12665-015-4644-8

BONACCI, O. & ROJE-BONACCI, T. (1997): Hidrološki vid određivanja biološkog minimuma rijeke Žrnovnice. [Hydrological aspects of determining the biological minimum of the Žrnovnica River – in Croatian].– Hrvat. Vode, 5, 1997, 339–349.

BGR, IAH, KIT, UNESCO (2017): World Karst Aquifer Map, 1:40 000 000. Berlin, Reading, Karlsruhe and Paris. URL: https://gdk.gdi-de.org/geonetwork/srv/api/records/473d851c-4694-4050-a37f-e421170eca8.

BRKIĆ, Ž., KUHTA, M., HUNJAK, T., & LARVA, O. (2020): Regional Isotopic Signatures of Groundwater in Croatia.– Water, 12/7. doi: 10.3390/w12071983

CAETANO BICALHO, C., BATIOT-GUILHE, C., SEIDEL, J.L., VAN EXTER, S. & JOURDE, H. (2012): Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer.– J Hydrol, 450–451, 206–218. doi: 10.1016/j.jhydrol.2012.04.059

CELLE-JEANTON, H., EMBLANCH, C., MUDRY, J. & CHARMOILLE, A. (2003): Contribution of time tracers (Mg2+, TOC, δ13CTDIC, NO3−) to understand the role of the unsaturated zone: A case study – Karst aquifers in the Doubs valley, eastern France.– Geophys Res Lett, 30/6. doi: 10.1029/2002GL016781

CELLE-JEANTON, H., TRAVI, Y. & BLAVOUX, B. (2001): Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales.– Geophys Res Lett, 28/7, 1215–1218. doi: 10.1029/2000GL012407

CIZMAS, L., SHARMA, V.K., GRAY, C.M. & MCDONALD, T.J. (2015): Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk.– Environ Chem Lett, 13/4, 381–394. doi: 10.1007/s10311-015-0524-4

CLARK, I., & FRITZ, P. (1997): Environmental Isotopes in Hydrology.– Lewis Publication.

ĆUK ĐUROVIĆ, M., PETRIČ, M., JEMCOV, I., MULEC, J., GRUDNIK, Z. M., MAYAUD, C., BLATNIK, M., KOGOVŠEK, B. & RAVBAR, N. (2022): Multivariate Statistical Analysis of Hydrochemical and Microbiological Natural Tracers as a Tool for Understanding Karst Hydrodynamics (The Unica Springs, SW Slovenia).– Water Resour Res, 58/11, e2021WR031831. doi: 10.1029/2021WR031831

DANSGAARD, W. (1964): Stable isotopes in precipitation.– Tellus, 16/4, 436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x

DINNO, A. (2017): Dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. https://cran.r-project.org/package=dunn.test

DIRECTIVE (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.

DODGEN, L.K., KELLY, W.R., PANNO, S.V, TAYLOR, S.J., ARMSTRONG, D.L., WILES, K.N., ZHANG, Y. & ZHENG, W. (2017): Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.– Sci Total Environ, 578, 281–289. doi: 10.1016/j.scitotenv.2016.10.103

DOUMMAR, J., GEYER, T., BAIERL, M., NÖDLER, K., LICHA, T. & SAUTER, M. (2014): Carbamazepine breakthrough as indicator for specific vulnerability of karst springs: Application on the Jeita spring, Lebanon.– Appl Geochemistry, 47, 150–156. doi: 10.1016/j.apgeochem.2014.06.004

FILIPOVIĆ, M., FRANGEN, T., TERZIĆ, J. & LUKAČ REBERSKI, J. (2023): Hydrogeology of a complex karst catchment in Southern Dalmatia (Croatia) and Western Herzegovina (Bosnia and Herzegovina).– J Maps, 19/1, 2112775. doi: 10.1080/17445647.2022.2112775

FRITZ, F. (1979): Općina Split. Hidrogeološka studija. [Split municipality. Hydrogeological study – in Croatian].– Hrvatski geološki institut. Fond stručne dokumentacije, 191.

GAT, J.R. & CARMI, I. (1970): Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area.– J Geophys Res, 75/15, 3039–3048. doi: 10.1029/JC075i015p03039

GEOTEHNIKA (1975): Akumulacija Đale – Pribransko rješenje. Istraživačko projektna dokumentacija. Idejni projekt za brtvljenje akumulacijskog bazena [Đale reservoir – dam design. Research project documentation. Conceptual design for sealing the accumulation basin. – in Croatian].– Fond struč. dok. Elektroprivrede Dalmacije, Split.

GOLDSCHEIDER, N. & DREW, D. (2007): Methods in Karst Hydrogeology.– IAH: International Contributions to Hydrogeology, 26 (1st ed.). CRC Press, 260 p. doi: 10.1201/9781482266023

HAN, D., SONG, X., & CURRELL, M.J. (2016): Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4.– Hydrol Earth Syst Sci, 20/5, 1983–1999. doi: 10.5194/hess-20-1983-2016

HARRELL, JR. F. (2023): Hmisc: Harrell Miscellaneous. R package version 5.1-0, https://CRAN.R-project.org/package=Hmisc

HILLEBRAND, O., NÖDLER, K., GEYER, T., & LICHA, T. (2014): Investigating the dynamics of two herbicides at a karst spring in Germany: Consequences for sustainable raw water management.– Sci Total Environ, 482–483, 193–200. doi: 10.1016/j.scitotenv.2014.02.117

HOLLANDER, M. & WOLFE, D.A. (1973): Nonparametric Statistical Methods.– John Wiley, New York, New York.

HUNJAK, T., LUTZ, H.O. & ROLLER-LUTZ, Z. (2013): Stable isotope composition of the meteoric precipitation in Croatia.– Isotopes Environ Health Stud, 49/3, 336–345. doi: 10.1080/10256016.2013.816697

JEBREEN, H., BANNING, A., WOHNLICH, S., NIEDERMAYR, A., GHANEM, M. & WISOTZKY, F. (2018): The Influence of Karst Aquifer Mineralogy and Geochemistry on Groundwater Characteristics: West Bank, Palestine.– Water, 10/12., doi: 10.3390/w10121829

JUKIĆ, D. & DENIĆ-JUKIĆ, V. (2008): Estimating parameters of groundwater recharge model in frequency domain: Karst springs Jadro and Žrnovnica.– Hydrol Process, 22/23, 4532–4542. doi: 10.1002/hyp.7057

JUKIĆ, D. & DENIĆ-JUKIĆ, V. (2015): Investigating relationships between rainfall and karst-spring discharge by higher-order partial correlation functions.– J Hydrol, 530, 24–36. doi: 10.1016/j.jhydrol.2015.09.045

JUKIĆ, D., DENIĆ-JUKIĆ, V. & KADIĆ, A. (2022): Temporal and spatial characterization of sediment transport through a karst aquifer by means of time series analysis.– J Hydrol, 609. doi: 10.1016/j.jhydrol.2022.127753

KADIĆ, A., DENIĆ-JUKIĆ, V. & JUKIĆ, D. (2017): Revealing hydrological relations of adjacent karst springs by partial correlation analysis.– Hydrol Res, 49/3, 616–633. doi: 10.2166/nh.2017.064

KADIĆ, A., DENIĆ-JUKIĆ, V. & JUKIĆ, D. (2019): Analiza meteoroloških i hidroloških odnosa u kršu primjenom parcijalne kros-korelacijske funkcije višeg reda. [Analysis of meteorological and hydrological relations in the karst using higher-order partial cross-correlation function – in Croatian].– Hrvatske vode, 27/109, 201-210.

KAPELJ, S., KAPELJ, J., BIONDIĆ, R., BIONDIĆ, B., KOVAČ, I., TUŠAR, B., PRELOGOVIĆ, E., MARJANAC, T., ANDRIĆ, M., KOVAČIĆ, D., STRELEC, S. & GAZDEK, M. (2006): Studija upravljanja vodama sliva Jadra i Žrnovnice – Prva faza studijsko istraživačkih radova [Water management study of the Jadro and Žrnovnica springs recharge area – first phase – in Croatian]. EVV:1/2005.– Hrvatske vode, Split.

KAPELJ, S., KAPELJ, J., NOVOSEL, A. & SINGER, D. (2001): Hidrogeološka istraživanja slivnog područja izvora Jadra i Žrnovnice - preliminarni izvještaj, I faza istraživanja [Hydrogeological study of the Jadro and Žrnovnica catchment area – preliminary report, first phase – in Croatian]. Fond str. dok. HGI, br. 42/01, Zagreb.

KAPELJ, S., KAPELJ, J. & ŠVONJA, M. (2012): Hidrogeološka obilježja sliva Jadra i Žrnovnice.– Tusculum, 5/1, 205–216.

KATZ, B.G. & GRIFFIN, D.W. (2008): Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin.– Environ Geol, 55/4, 801–821. doi: 10.1007/s00254-007-1033-y

LLAMAS, M.I., JIMÉNEZ-GAVILÁN, P., LUQUE-ESPINAR, J.A., BENAVENTE- HERRERA, J., CANDELA, L., SANMIGUEL- MARTÍ, M., RAMBLA-NEBOT, J., ARANDA-MARES, J.L., & VADILLO-PÉREZ, I. (2022): Hydrogeological, hydrodynamic and anthropogenic factors affecting the spread of pharmaceuticals and pesticides in water resources of the Granada plain (Spain).– J Hydrol, 610, 127791. doi: 10.1016/j.jhydrol.2022.127791

LOBOREC, J., KAPELJ, S. & NOVAK, H. (2015): Analysis of groundwater pollution hazard in karst: a case study of Jadro and Žrnovnica catchment area.– Građevinar, 67/11, 1093–1103. doi: 10.14256/JCE.1250.2015

LUKAČ REBERSKI, J., RUBINIĆ, J., TERZIĆ, J. & RADIŠIĆ, M. (2020): Climate Change Impacts on Groundwater Resources in the Coastal Karstic Adriatic Area: A Case Study from the Dinaric Karst.– Nat Resour Res, 29/3, 1975–1988. doi: 10.1007/s11053-019-09558-6

LUKAČ REBERSKI, J., SELAK, A., LAPWORTH, D. J., MAURICE, L. D., TERZIĆ, J., CIVIL, W. & STROJ, A. (2023): Emerging organic contaminants in springs of the highly karstified Dinaric region.– J Hydrol, 621, 129583. doi: 10.1016/j.jhydrol.2023.129583

MALDINI, K., CUKROV, N., PIKELJ, K., MATIĆ, N. & MLAKAR, M. (2023): Geochemistry of Metals and Organic Matter in Water and Sediments of the Karst River Cetina, Croatia.– Water, 15/7. doi: 10.3390/w15071429

MAAS, B., PETERSON, E.W., HONINGS, J., OBERHELMAN, A., OWARE, P., RUSTHOVEN, I. & WATSON, A. (2019): Differentiation of Surface Water and Groundwater in a Karst System Using Anthropogenic Signatures.– Geosciences, 9/4. doi: 10.3390/geosciences9040148

MATIATOS, I., ALEXOPOULOS, A. & GODELITSAS, A. (2014): Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece).– Sci Total Environ, 476/477, 577–590. doi: 10.1016/j.scitotenv.2014.01.042

MATIĆ, N., MALDINI, K., CUCULIĆ, V. & FRANČIŠKOVIĆ-BILINSKI, S. (2012): Investigations of karstic springs of the Biokovo Mt from the Dinaric karst of Croatia.– Geochemistry, 72/2, 179–190. doi: 10.1016/j.chemer.2011.08.001

MUDARRA, M., ANDREO, B. & BAKER, A. (2011): Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: Relationship with infiltration processes.– Sci Total Environ, 409/18, 3448–3462. doi: 10.1016/j.scitotenv.2011.05.026

OGLE, D.H., DOLL, J.C., WHEELER, A.P., DINNO, A. (2023): FSA: Simple Fisheries Stock Assessment Methods. R package version 0.9.5, https://CRAN.R-project.org/package=FSA.

OKSANEN, J., SIMPSON, G., BLANCHET, F. G., KINDT, R., LEGENDRE, P., MINCHIN, P., HARA, R., SOLYMOS, P., STEVENS, H., SZÖCS, E., WAGNER, H., BARBOUR, M., BEDWARD, M., BOLKER, B., BORCARD, D., CARVALHO, G., CHIRICO, M., DE CÁCERES, M., DURAND, S. & WEEDON, J. (2022): Vegan community ecology package version 2.6-2 April 2022.

ONDRASEK, G., BAKIĆ BEGIĆ, H., ROMIĆ, D., BRKIĆ, Ž., HUSNJAK, S. & BUBALO KOVAČIĆ, M. (2021): A novel LUMNAqSoP approach for prioritising groundwater monitoring stations for implementation of the Nitrates Directive.– Environ Sci Eur, 33/1, 23. doi: 10.1186/s12302-021-00467-1

PADILLA, I.Y. & VESPER, D.J. (2018): Fate, Transport, and Exposure of Emerging and Legacy Contaminants in Karst Systems: State of Knowledge and Uncertainty BT.– In: WHITE, W.B., HERMAN, J.S., HERMAN, E.K. & RUTIGLIANO, M. (eds.): Karst Groundwater Contamination and Public Health. Springer International Publishing, 33–49.

PARKHURST, D.L. & APPELO, C.A.J. (1999): User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. – U.S. Geological Survey, Water Resources Investigations Report, 99-4259, Washington DC.

PATEKAR, M., BAŠIĆ, M., POLA, M., KOSOVIĆ, I., TERZIĆ, J., LUCCA, A., MITTEMPERGHER, S., BERIO, L. R. & BOROVIĆ, S. (2022): Multidisciplinary investigations of a karst reservoir for managed aquifer recharge applications on the island of Vis (Croatia).– Acque Sotter – Ital J Groundw, 11/1 37–48. doi: 10.7343/as-2022-557

PERRIN, J. (2003): A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers. PIPER, M.A. (1944): A graphic procedure in the geochemical interpretation of water-analyses.– Eos, Trans Am Geophys Union, 25/6, 914–928. doi: 10.1029/TR025i006p00914

PLANTAK, L., BIONDIĆ, R., MEAŠKI, H. & TEŽAK, D. (2021): Hydrochemical Indicators Analysis of Seawater Intrusion in Coastal Karstic Aquifers on the Example of the Bokanjac-Poličnik Catchment Area in Zadar, Croatia.– Applied Sciences, 11/24. doi: 10.3390/app112411681

POLJAK, (2014): Određivanje srednjeg vremena zadržavanja podzemne vode u kršu primjenom prirodnih izotopa - primjer sliva Jadro i Žrnovnica. [Determination of mean residence time of groundwater in karst using natural isotopes – example of Jadro and Žrnovnica catchment – in Croatian].– PhD Thesis, University of Zagreb, Faculty of Geotechnical Engineering. Varaždin.

PULIDO-BOSCH, A. (2021): Principles of Karst Hydrogeology.– Springer International Publishing. doi: 10.1007/978-3-030-55370-8

R CORE TEAM (2023): R: A Language and Environment for Statistical Computing.– Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org

RICHARDS, L.A., GUO, S., LAPWORTH, D.J., WHITE, D., CIVIL, W., WILSON, G.J.L., LU, C., KUMAR, A., GHOSH, A., KHAMIS, K., KRAUSE, S., POLYA, D.A. & GOODDY, D.C. (2023): Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. -Environ Pollut, 327, 121626. doi: 10.1016/j.envpol.2023.121626

SCHAIDER, L.A., RUDEL, R.A., ACKERMAN, J.M., DUNAGAN, S.C., & BRODY, J.G. (2014): Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer.– Sci Total Environ, 468–469, 384–393. doi: 10.1016/j.scitotenv.2013.08.067

SCHMIDT, S., GEYER, T., MAREI, A., GUTTMAN, J. & SAUTER, M. (2013): Quantification of long-term wastewater impacts on karst groundwater resources in a semi-arid environment by chloride mass balance methods.– J Hydrol, 502, 177–190. doi: 10.1016/j.jhydrol.2013.08.009

SCHRIKS, M., HERINGA, M.B., VAN DER KOOI, M.M.E., DE VOOGT, P. & VAN WEZEL, A.P. (2010): Toxicological relevance of emerging contaminants for drinking water quality.– Water Res, 44/2, 461–476. doi: 10.1016/j.watres.2009.08.023

SELAK, A., LUKAČ REBERSKI, J., BOLJAT, I. & TERZIĆ, J. (2024): Characterizing occurrence of emerging organic contaminants in Dinaric karst catchment of Jadro and Žrnovnica springs, Croatia.– Emerg Contam, 10/3, 100327. doi: 10.1016/j.emcon.2024.100327

SELAK, A., REBERSKI, J.L., KLOBUČAR, G. & GRČIĆ, I. (2022a): Ecotoxicological aspects related to the occurrence of emerging contaminants in the Dinaric karst aquifer of Jadro and Žrnovnica springs.– Sci Total Environ., 825, 153827. doi: 10.1016/j.scitotenv.2022.153827

SELAK, A., LUKAČ REBERSKI, J., KLOBUČAR, G. & GRČIĆ, I. (2022b): Data on occurrence and ecotoxicological risk of emerging contaminants in Dinaric karst catchment of Jadro and Žrnovnica springs.– Data Br., 42, 108157. doi:10.1016/j.dib.2022.108157

SHEIKHY NARANY, T., BITTNER, D., DISSE, M. & CHIOGNA, G. (2019): Spatial and temporal variability in hydrochemistry of a small-scale dolomite karst environment.– Environ Earth Sci, 78/9, 273. doi: 10.1007/s12665-019-8276-2

SPEARMAN, C. (1904): The Proof and Measurement of Association between Two Things.– Am. J. Psychol. 15, 72–101.

ŠEGOTA, T., & FILIPČIĆ, A. (2003): Köppen’s classification of climates and the problem of corresponding Croatian terminology.– Geoadria, 8/1, 17–37.

TERZIĆ, J., MARKOVIĆ, T. & LUKAČ REBERSKI, J. (2014): Hydrogeological properties of a complex Dinaric karst catchment: Miljacka Spring case study.– Environ Earth Sci, 72/4, 1129–1142. doi: 10.1007/s12665-013-3031-6

TORAN, L. & REISCH, C. E. (2013): Using Stormwater Hysteresis to Characterize Karst Spring Discharge.– Groundwater, 51/4, 575–587. doi: 10.1111/j.1745-6584.2012.00984.x

TORRES-MARTÍNEZ, J. A., MORA, A., KNAPPETT, P. S. K., ORNELASSOTO, N. & MAHLKNECHT, J. (2020): Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model.– Water Res, 182, 115962. doi: 10.1016/j.watres.2020.115962

USGS (2021): PHREEQC v. Software release 5 December 2021. URL: https://www.usgs.gov/software/phreeqc-version-3

VASIĆ, L., ŽIVOJINOVIĆ, D. & RAJAKOVIĆ-OGNJANOVIĆ, V. (2020): Hydrochemical changes and groundwater grouping data by multivariate statistical methods within one karst system: recharge–discharge zone (Eastern Serbia case study).– Carbonates and Evaporites, 35/1, 15. doi: 10.1007/s13146-019-00548-6

WEI, T. & SIMKO, V. (2021): R package ‘corrplot’: Visualization of a Correlation Matrix. (Version 0.92), https://github.com/taiyun/corrplot

WHITE, W. (1997): Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains.– Environ Geol, 30, 46–58. doi: 10.1007/s002540050131

YURTSEVER, Y. & GAT, J. (1981): Atmospheric waters. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle.– In: GAT, J.R. & GONFIANTINI, R. (eds.): Technical Reports Series 210, IAEA, Vienna, 103–142.

ZEMANN, M., WOLF, L., GRIMMEISEN, F., TIEHM, A., KLINGER, J., HÖTZL, H. & GOLDSCHEIDER, N. (2015): Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan.– Environ Pollut, 198, 133–143. doi: 10.1016/j.envpol.2014.11.033

ŽIVANOVIĆ, V., JEMCOV, I. & DRAGIŠIĆ, V. (2022): Vulnerability methods in hard rock formation as a basis for groundwater risk assessment – from resource to source.– Geol Croat, 75, 381–392. doi: 10.4154/gc.2022.23