The Ljubija geothermal field: A herald of the Pangea break-up (NW Bosnia and Herzegovina)

Main Article Content

Ladislav Palinkaš
Sibila Borojević Šoštarić
Sabina Strmić Palinkaš
Walter Prochaska
Zoltan Pécskay
Franz Neubauer
Jorge E Spangenberg

Abstract

The Ljubija ore deposits are the loci typici of siderite-barite-polysulphide deposits withinthe Inner Dinarides, Gemerides and Eastern Alps. Numerous sites of ore outcrops, smalleror larger ore bodies of mineralization, consisting of Fe carbonates, sulphides, barite andfluorite are scattered over an area of 150 square km. The half billion tons of iron ore resourcesoccur as replacement in dolostones and limestones, and as open-space fillings(veins, veinlets) in phyllites and sandstones. The genesis of the Ljubija ore deposits hasbeen explained as (i) syngenetic sedimentary-exhalative, (ii) hydrothermal-metasomatic inMiddle Triassic time or (iii) hydrothermal replacement of sedimentary carbonates in Permiantime. Basically two alternatives Variscan or Alpine metallogeny, frame the time of genesisfrom the Middle Carboniferous to the Middle Triassic. Genetic interpretation of theLjubija ore deposits required convincing arguments based on recent achievements of platetectonics. This contribution presents a set of new data on ore petrology, geochemistry, geologyand time of formation. The Ljubija ore field could justifiably be termed the „Ljubijageothermal field“, due to its areal extent and the thermal characteristics of numerous oredeposits and occurrences within the Sana-Una Palaeozoic terrain. The Ljubija geothermalfield marks the first signs of thermal instability of Pangea, revealing its breakdown along thedeep fractures and heralding incipient intracontinental rifting, the first phase of the newAlpine Wilson cycle. The research reveals novel data on the P-T-X characteristics of oreforming fluids (microthermometry, ion chromatography, Raman spectrometry), sulphur isotopes,maturity of organic matter by vitrinite reflection, and age determination by 40Ar/39Arand K-Ar methods. It adopts argumentatively all the estimated research parameters thatconstrain a justified genetic model.

Downloads

Download data is not yet available.

Article Details

Section
Original Scientific Papers

References

BAKKER, RJ. (2003): Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol, 194, 3–23.

BAKKER, RJ. (1991): Adaption of Bowers & Helgeson (1983) equation of state to isochore and fugacity coeficient calculation in the H2O-CO2-CH4-N2-NaCl fluid system. Chem Geol, 154, 225-236.

BELAK, M., JAMIČIĆ, D., CRNKO, J. & SREMAC, J. (1995): Niskometamorfne stijene zelenih ortoškriljavaca i paraškriljavaca na cesti Runolist-Željezničar (Low-metamorphic rocks, greenschists, ortometamorphic and parametamorphic on the road Runolist-Željezničar . In: ŠIKIĆ, K. (Ed.): Geološki vodič Medvednice (Geological guide on Medvednica), Geol Inst, Zagreb, 104-107, Zagreb.

BERKER, CE. & PAWLEVICZ, MJ. (1994): Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperature. A Comparison of Methods. In: Mukhopadhay, PK., & Dow, WG. (Eds): Vitrinite reflectance as a maturity parameter: application and limitations. Am Chem Soc ACS, Symp ser, 570, 216-229. Washington.

BOROJEVIĆ ŠOŠTARIĆ, S. (2004): Geneza sideritno-baritno-polisulfidnih rudnih ležišta u paleozoiku Unutrašnjih Dinarida (Genesis of siderite-barite-polysulfide ore deposits in Palaeozoic of the Inner Dinarides). Master thesis, University of Zagreb, p. 120.

BOROJEVIĆ ŠOŠTARIĆ, S., PALINKAŠ, AL., STRMIĆ PALINKAŠ, S., BERMANEC, V., NEUBAUER, F., SPANGENBERG, JE. & PROCHASKA, W. (2009): Origin of siderite –barite-polysulfide mineralisation in Petrova and Trgovska Gora Mts., NW Dinarides. Miner Petrol, 97, 111-128.

BOROJEVIĆ ŠOŠTARIĆ, S., NEUBAUER, F., HANDLER, R & PALINKAŠ, LA. (2012). Tectonothermal history of the basement rocks within the NW Dinarides: new 40Ar/39Ar ages and synthesis. Geol Carpath, 63, 6, 441-452.

BOSTICK, NH., CASHMAN, SM., McCULLOH, TH. & WADDEL, CT. (1979): Gradients of vitrinite reflectance and present temperature in the Los Angeles and Ventura Basin, California.- In: Olitz, DF. (Ed.): Low temperature metamorphism of kerogen and clay minerals. Soc Econ Paleont Miner, Pacific Sec, 65-96, Los Angeles.

BOTTRELL SH., YARDLEY, BWD. & BUCLEY, F. (1988): A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Mineral 11, 279–290

CAN, I. (2002): A new improved Na/K geothermometer by artificial neutral networks. Geothermics, 31, 751–760.

CHANNEL, JET., D'ARGENIO, B. & HORVATH, F. (1979): Adria, the African promontory in Mesozoic Mediterranean paleogeography. Earth-Sci Rev., 15, 213-202.

CISSARZ, A. (1951): Die Stellung der Lagerstätten Jugoslaviens im geologischen Raum. Geološki vesnik IX, 23-60.

COLLINS, PLF. (1979): Gas hydrates in CO2 bearing fluid inclusions and the use of freezing data to estimating of salinity. Econ Geol, 74, 1435–1444

CRAIG, H. (1966): Isotopic Composition and Origin of the Red Sea and Salton Sea Geothermal Brines. Science, 154, 3756, 1544-1548.

CVIJIĆ, R. (2001): Mineralni resursi željeza, pelitoidne rude Ljubijske metalogenetsk oblasti i perspektive razvoja (Iron ore resources, pelitoid ore of the Ljubija metallogenic province and development), (in Serbian with English summary). Fac Min Geol, Belgrade, p. 154.

CVIJIĆ, R. (2004): Geomenađment u funkciji koriščenja i razvoja mineralnih resursa Ljubijske metalogenetske oblasti (Geomanagement in the function of utility and development of mineral resources in the Ljubija metallogenic district). Rudarski Institut, Prijedor, p.348.

DAVIES, DW., LOWENSTEIN, TK. & SPENCER, RJ. (1990): Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochim Cosmochim Ac, 54, 591-601.

DAVISSON, ML. & CRISS, RE. (1996): Na-Ca-Cl relations in basinal fluids.- Geochim Cosmoshim Ac, 60/15, 2743-2752.

DERCOURT, J., RICOU, L.E., & VRIELYNCK, B., (1993): Atlas Tethys Paleoenviromental Maps. Gauthiers-Villars, Paris. 307 pp.

ĐEREKOVIĆ, B., MAKSIMČEV, S., KUJUNDŽIĆ, S., SUNARIĆ, O., HOHRAJN, J., KOVAČEVIĆ, R., KAČAR, B., VELJKOVIĆ, R., JOJIĆ, D., MARIĆ, LJ., LOŽAJIĆ, M., PAMIĆ, J., KAPELER, I., ĐORĐEVIĆ, D. & JURIĆ, M. (1976): OGK SFRJ 1:100 000, map Prijedor, Feder Geol Survey, Belgrade.

CÉCILE, F., BOIRON, MC., DUBESSY, J., CHABIRON, A., CHAROY, B., & CRESPOT M. (2002): Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study. Geochim Cosmochim Ac, 66, 8, 1401-1407.

EBNER, F., CERNY, I., EICHORN, R., GÖTZINGER, M., PAAR, W., PROCHASKA, W., & WEBER, L. (2000): Mineral Resources in the Eastern Alps and Adjoining area. In: Neubauer & Höck (Eds): Aspects of Geology in Austria, Miner Österr Geol Ges, 92, 157-184.

FOURNIER, RO. & TRUESDELL, AH., (1973): An empirical Na-K-Ca geothermometer for natural waters.- Geochim Cosmochim Ac, 37, 1255-1275.

FRIDMAN, I. & O'NEIL, JR (1977): Compilation of stable isotope fractionation factors of geochemical interest. US Geol Sur Am Bull, 63, 325-380.

GIGGENBACH, WF., (1988): Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Ac, 52, 2749-2765.

GRECULA, P., ABONYI, A., ABONYIOVÁ, M., ANTAŠ, J., BARTALSKÝ, B., BARTALSKÝ, J., DIANIŠKA, I, DRNZÍK, E., ÏUÏA, R., GARGULÁK, M., GAZDAČKO, L., KOBULSKÝ, J., LÖRINCZ, L., MACKO, J., NÁVESÒÁK, D., NÉMETH, Z., NOVOTNÝ, L., RADVANEC, M., ROJKOVIČ, I., ROZLOŽNÍK, L., ROZLOŽNÍK, O., VARČEK, C.,ZLOCHA, J. (1995): Mineral deposits of the Slovak Ore Mountains. Miner Slovaca, Monograph, 1, Bratislava, p 834.

GRUBIĆ A., PROTIĆ LJ., FILIPOVIĆ I. & JOVANOVIĆ D. (2000): New data on the Palaeozoic of the Sana-Una Area. Proceedings of the International Symposium of the Dinarides and the Vardar Zone. Acad Sci Art Rep Serb, Dept Natur Math and Tech Sci I, Banja Luka, 49—54.

GRUBIĆ, A. & CVIJIĆ, R. (2003): New contribution in Geology and Metallogeny of the Ljubija Iron Ore Mine. Mining Inst., Prijedor, p.137.

GRUBIĆ A. & PROTIĆ LJ. (2003): Novi prilozi za geologiju i metalogeniju rudnika gvozdja Ljubija. Grubić A. & Cvijić, P. (Eds.). Mining Inst, Prijedor, 1—137

HAAS, JL. (1971): The effect of salinity on the maximum thermal gradient of hydothermal system at hydrostatic pressure. Econ Geol, 66, 940-946.

HAAS, JL. (1976): Thermodynamic Properties of the Coexisting Phases and Thermochemical Properties of the NaCl Component in Boiling NaCl Solutions. Geol Survey Bull, 1421-B.

HARDI, LA. (1990): The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis. Am J Sci, 290, 43-106.

HEINRICH, C. & NEUBAUER, F. (2002): Cu–Au–Pb–Zn–Ag metallogeny of the Alpine–Balkan–Carpathian–Dinaride geodynamic province. Min Deposita 37, 533–540.

HOLSER, WT. & KAPLAN, IR. (1966): Isotope geochemistry of sedimentary sulfates. Chem Geol, 1, 93-135.

HORITA, J., FRIEDMAN, TJ., LAZAR, B. & HOLLAND, HD. (1991): The composition of Permian seawater.- Geochim Cosmochim Ac, 55, 417-432.

HORVATH, F. & D'ARGENIO, B. (1985): Subsidance history and tectonics of western Adria margin. Ac Geol Hun, 28, (1-2), 109-117.

HOSIENI K., REED AH. & SCANLON MW., (1985): Thermodynamics of the lambda transition and the equation of state of quartz. Am Mineral, 70,782–793.

HSÜ, KJ. (1989): Time and place in Alpine orogenesis-the Fermor lectures. Geo Soc S P
45, 421-443.

HURAI,V., HARČOVA, E., HURAIOVA, M., OZDIN, D., PROCHASKA, W. & WIEGEROVA, V. (2002): Origin of siderite veins in the Western Carpathians I. P-T-X-δ13C-δ18O relations in ore forming brines of the Rudnany deposits. Ore Geol Rev, 21, 67-101.

HURAI, V., LEXA O., SCHULMANN, K., MONTIGNY, R., PROCHASKA, W., FRANK, W, KONECNY., P, KRÁL J., THOMAS, R., CHOVAN, M. (2008a): Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids, 8, 181–207.

HURAI, V., PROCHASKA, W., LEXA, O., SCHULMANN, K., THOMAS, R., & IVAN, P. (2008b): High-density nitrogen inclusions in barite from a giant siderite vein: implications for Alpine evolution of the Variscan basement of Western Carpathians, Slovakia. J Metamorph Geol, 26, 487–498.

JANKOVIĆ, S. (1977): Major Alpine metallogenic units in the northeastern Mediterranean and concepts of plate tectonics. In: Janković, S. (Ed.), Metallogeny and Plate Tectonics in the Northeastern Mediterranean. IGCP-UNESCO, Correlation program, vol. 3, Fac Mining Geol, Belgrade, 105–172.

JANKOVIĆ, S. (1987): Genetic types of the Alpine ore deposits and their tectonic settings in the Northeastern Mediterranean and Southwest Asia. In: Petraschek,WE., Janković, S. (Eds.), Geotectonic Evolution and Metallogeny of the Mediterranean Area and Western Asia. IGCP 169, Springer-Verlag, Wien, 23–36.

JEREMIĆ, M. (1958): Baritno-fluoritno ležište Žune kod Ljubije (Barite-fluorite deposit Žune-Dolinac near Ljubija, in Serbian). Rudarsko-metalurški zbornik, 4, Ljubljana.

JEREMIĆ, M. (1959): Baritonosno područje Une i Sane u sjeverozapadnoj Bosni (Barite bearing region within the Una and Sana rivers in northwest Bosnia, in Serbian). Rudarstvo i metalurgija, 2, Belgrad.

JURKOVIĆ, I. (2003): Metallogeny of Southern Tisia–Moslavačka gora Mt., and Mts. Psunj, Papuk, Krndija. Rudarsko-geološko-naftni zbornik 15, 1–17 (in Croatian).

JURKOVIĆ, I. (1961): Minerali željeznih rudnih ležišta Ljubije kod Prijedora (Mineralogical investigation of iron ore deposits Ljubija near Prijedor in Bosnia, in Croation with English summary). Geološki vjesnik, 14, 161-220.

JURIĆ, M. (1971): Geologija područja sanskog paleozoika u sjeverozapadnoj Bosni (Geology of Sana Palaeozoic, NW Bosnia; in Croation). Geološki glasnik, XI, Sarajevo, p.146.
KIYOSU, Y. (1973): Sulfur isotope fractionation among sphalerite, galena and sulfide ions. Geochem J, 7, 191-199.

KARAMATA S., KRSTIĆ B., DIMITRIJEVIĆ M.D., DIMITRIJEVIĆ M.N., KNEŽEVIĆ V., STOJANOV R. & FILIPOVIĆ I. (1997): Terranes between the Moesian Plate and the Adriatic Sea. Ann Geol Pays Hellén 37, (1996/97), 429—477.

KATZER, F. (1910): Die Eisenerz lagerstätten Bosniens und der Herzegovina, Manzsche Hof: Universitäts - Buchhandlung, Vienna, p. 343.

KATZER, F. (1925): Geologie Bosniens und der Herzegovina. Direkcija državnih rudarskih poduzeća. Sarajevo, p. 520.

KORZHINSKII, D. S., 1968: The theory of metasomatic zoning - Mineral. Deposita 3, 222-231.

KOVACS, S. (1984): North Hungarian Triassic facies types: a review. Ac Geol Hun, 27, (3-4), 251-264.

KRSTIĆ B., FILIPOVIĆ I., MASLAREVIĆ LJ., SUDAR M. & ERCEGOVAC M. (2005): Carboniferous of the Central Part of Balkan Peninsula. Bull T CXXX, Acad Serbe Sci Art, Cl. Sci Math Nat, Sci Nat 43, 41—56.

LAUBE, N., FRIMMEL, HE., HOERNES, S. (1995): Oxygen and carbon isotopic study on the genesis of the Steirischer Erzberg siderite deposit (Austria). Miner Deposita 30, 285–293.

LIPPMANN, M., TRUESDELL, A., AND FRYE, G., (1999), The Cerros Prieto and Salton Sea geothermal fields- are they really alike?: Proceedings of the 24th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, p. 25–27.

LUDWIG, KR. (2001): Using Isoplot/Ex, Version 2.01: A geochronological, toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec P 1a, Berkeley, p 47.

LUDWIG, KR. (2005): Isoplot/EX rev. 3.32: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Spec P 4, Berkeley

McCAFFERY, MA., LAZAR, B. & HOLLAND, HD. (1987): The evaporation path of seawater and the coprecipitation of Br- and K+ with halite.- J Sediment Petrol, 57, 928-937.

MERINO, E., CANALS, A. & FLETCHER. R.C. (2006): Genesis of self-organized zebra textures in burial dolomites: Diplacives veins, induced stresses, and dolomititzation, Geol Acta, vol.4, 3, 383-393.

MILOVANOVIĆ, D. (1984): Petrologija stena niskog stepena metamorfizma iz središnjeg dela Drina-Ivanjica paleozoika (Petrology of low-metamorphic rocks from the Middle part of Drina-Ivanjica Palaeozoic; in Serbian). Glas Pri muz srp zemlje, (Bull. Museum Serb Lands), 39, 1-139, Belgrade.

NADEN, J. (1996): Calcic Brine: a Microsoft Excel 5.0 Add-in for calculating salinities from microthermometric data in the system NaCl−CaCl2−H2O. In: Brown PE, Hagemann SG (Eds) PACROFI VI, Pan Am Conf Res Fluid Inclusion: Madison Proceed, 97–98.

NÖTH (1952): Die Eisenerzlagerstätten Jugoslawiens. Belgrade

OHMOTO, H. & RYE, R.O. (1979): Isotopes of Sulfur and Carbon.- In: Barnes HL (Ed): Geochemistry of Hydrothermal Ore Deposits. Wiley-Intersci Pub, 509-561, New York

OHMOTO, H. & LASAGA, A. (1982): Kinetics of reactions between aqueous sulfates and sulfides in hydtothermal systems. Geochim Cosmochim Ac, 46/10, 1727-1745.

PETRASCHECK, WE. (1977): Some basic problems of metallogeny and plate tectonics in the Eastern Mediterranean. In: Janković, S. (Ed), Metallogeny and Plate Tectonics in the Northeastern Mediterranean.
IGCP-UNESCO, Corr program, Vol 3, Fac Min Geol, Belgrade, 193–200.

PALINKAŠ, AL. (1985): Lead isotopes patterns in galenas from some selected ore deposits in Croatia and NW Bosnia. Geološki vjesnik, 38, 175-189.

PALINKAŠ, AL. (1988): Geokemijske karakteristike paleozojskih metalogenetskih područja: Samoborska gora, Gorski Kotar, Lika, Kordun i Banija (Geochemical characteristics of Palaeozoic metallogenic regions: Samoborska gora, Gorski Kotar, Lika, Kordun and Banija, in Croatian with English summary). Diss, Uni Zagreb, p. 108.

PALINKAŠ, AL. (1990): Siderite-barite-polysulfide deposits and early continental rifting in Dinarides. Geološki vjesnik, 43, 181-185.

PALINKAŠ, AL., BOROJEVIĆ, S., PROCHASKA, W., ŠINKOVEC, B. &

ŠIFTAR, D. (2000): Rude Samobor, siderite-hematite-polysulfide-barite mineral deposit within the Zagorje-Mid-Transdanubian Zone, NW Croatia. In: Tomljenović, B., Balen, D., Saftić, B. (Eds) Vijesti, Abstracts, Proc. PANCARDI 2000, Dubrovnik, 37/3, 96-98.
PALINKAŠ, AL., BOROJEVIĆ, S., PROCHASKA, W., ŠINKOVEC, B. & ŠIFTAR, D. (2001): Rude Samobor deposit as a prototype of siderite-barite-polysulfide-hematite mineralization in the Inner Dinarides, Croatia. In: Piestrzynski, A. (Ed): Mineral Deposits at the Beginning of the 21st Century. Proc. Joint 6th Biennial SGA-SEG Meeting, Krakow, Poland, Balkema Rotterdam, 317-320.

PALINKAŠ, AL., BOROJEVIĆ, S., STRMIĆ, S., PROCHASKA, W. & SPANGENBERG, JE. (2003a): Siderite-hematite-barite-polysulfide mineral deposits related to the Early intra-continental Tethyan rifting, Inner Dinarides, In: Eliopoulos et al. (Eds): Mineral Exploration and Sustainable Development, Millpress, Rotterdam, 1225-1228.

PALINKAŠ, AL., BOROJEVIĆ ŠOŠTARIĆ, S., STRMIĆ PALINKAŠ, S., BALOGH, K., PROCHASKA, W. & ŠIFTAR, D. (2003b): Ljubija siderite ore field, NW Bosnia, a precursor of the Early intra-continental rifting of the Tethys. In: Neubauer & Handler (Eds): Geodynamics and Ore Deposit Evolution of the Alpine-Balkan-Carpathian-Dinaride province. Proc. of the Final GEODE-ABCD workshop. Seggauberg, Austria, Uni Salzburg, 65.

PALINKAŠ, AL., BOROJEVIĆ ŠOŠTARIĆ, S., STRMIĆ PALINKAŠ. S., PROCHASKA, W., JE., & CUNA, S. (2010): Permian polysulfide-siderite-barite-haematite deposit Rude in Samoborska Gora Mts., Zagorje-Mid-Transdanubian zone of Internal Dinarides. Geol Croat, 63/1, 93-115.

PAMIĆ, J. (1984): Triassic Magmatism of the Dinarides in Yugoslavia. Tectonophysics, 109, 273-307.

PAMIĆ J. & PÉCSKAY Z. 1996: Geological and K/Ar ages of Tertiary volcanic formations from the southern part of the Panonian Basin in Croatia – based on surface and subsurface data. Nafta, 47, 195—202, Zagreb.

PAMIĆ, J. & JURKOVIĆ, I. (1997): Alpine magmatic–metallogenic formations of the Northwestern and Central dinarides. Rudarsko-Geološko-Naftni zbornik, 9, 1–9.

PAMIĆ, J., GUŠIĆ, J. & JELASKA, V., (1998): Geodynamic evolution of the Central Dinarides. Tectonophysics, 297, 251–268.

PAMIĆ, J., BALOGH, K., HRVATOVIĆ, H., BALEN, D., JURKOVIĆ, I. &

PALINKAŠ, AL. (2004): Ar and Ar-Ar dating of the Palaeozoic metamorphic complex from the Mid-Bosnian Schist Mts., Central Dinarides in Bosnia and Herzegovina. Miner Petrol, 82, 65-89.

PAVLOVIĆ, P. (2004): Evaluation of the potential of Salar del Rincon brine deposit as a source of lithium, potash, boron and other mineral resources, unpublished report, for Argentina Diamonds Ltd.

POHL, W. (1986) Comparative metallogeny of siderite deposits. Öst Schrift Erdwiss Komm, Wien, 8,271–282.

PROCHASKA, W., & HAFELLNER, M. (1994) Pretertiary Siderite Mineralization In The Eastern Alps. In: Grecula P, Nemeth Z (Eds) Variscan Metallogeny in the Alpine Orogenic Belt. Proc. Inter Conf, Stará Lesná, Slovakia. p 17.

PROCHASKA, W. (1997): Formation of different siderite provinces during the Alpine tectono-metamorphic events in the Eastern Alps of Austria. In: Papunen (Ed): Mineral deposits: research and exploration – where do they meet? Proc. 4th Biennial SGA Meeting, Turku, Finland, Balkema Rotterdam, 845-848.

RADVANEC, M., GRECULA, P., ŽÁK, K. (2004): Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev, 24, 267–298.
RAMOVIĆ (1957): Pregled olovno-cinčanih ležišta Bosne i Hercegovine. (The review of lead and zinc mineral deposits in Bosnia and Herzegovina; in Bosnian). Geološki glasnik, Sarajevo, 3, 5-124.

ROEDDER, E. (1984): Fluid inclusions. Reviews in Mineralogy; Miner Soc Am, 12, p 644, Washington.

SAERL, A. (1989): Saddle dolomite: a new view of its nature and origin. Miner Mag, 53, 547-555.dolomite: olded

SAEMUNDSSON (2009): Exploration for Geothermal Resources, geothermal systems in global perspective geothermal training programme organized by UNU-GTP, Kenya,

SHEPERD. TJ., RANKIN, AH. & ALDERTON, DHM., (1985): A practical guide to fluid inclusion studies. Blackie & Son Ltd., Glasgow, p 239.

SIBLEY, DF. & GREGG, JM. (1987): Classification of dolomite rock. J Sediment Petrol, 57, 6967-975,

SKINNER, BJ., ROSE, HJ., & MAYS, RE. (1967): Sulfides associated with the Salton Sea geothermal brine. Econ Geol, V. 62, 3, 316-330.

SLOVENEC, D. & PALINKAŠ, AL. (2003): Note in: Slovenec, D. & Bermanec, V., Sistematska mineralogija-mineralogija silikata (Systematic mineralogy- silicate mineralogy), Uni. Zagreb, p. 359.

STEVEN, T. & ZVI, C. (2011): Lithium production from highly saline Dead sea brines. Rev Chem Engineering.V.9, 3-4, Pages 293–318.

SZAKALL, S. (2001): Comparison of the Rudabanya (Hungary) and Nižna Slana (Slovakia) metasomatic iron and hydrothermal sulphide ore deposits with special references to the mineral paragenesis of Rudabanja. Diss, Tech Uni Košice, p.154.

STRMIĆ PALINKAŠ, S. (2004): Organic and inorganic geochemistry of Ljubija mineral deposits, NW Bosnia. Master thesis, Uni Zagreb, p. 101.

STRMIĆ PALINKAŠ, S., SPANGENBERG, JE. & PALINKAŠ AL. (2009): Organic and Inorganic Geochemistry of Ljubija Siderite Deposits, NW Bosnia and Herzegovina. Miner Deposita, 44, 893-913.

ŠARAC, M. (1981): Metalogenetske karakteristike rudonosne oblasti Ljubije (Metallogenic characteristics of the Ljubija ore-bearing region; in Serbian). Doc thesis, Uni Belgrade, Belgrade, p 135.

URBAN, M., THOMAS, R., HURAI, V., KONEČNÝ, K., & CHOVAN, M. (2006): Superdense CO2 inclusions in Cretaceous quartz-stibnite veins hosted in low-grade Variscan basement of the Western Carpathians, Slovakia. Miner Deposita, 40, 867–873

VERMA, SP., & SANTOYO, E., (1997): New improved equation for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection.- J Volcanol Geoth Res, 79, 9-23.

WARNE, S. St.J. (1962) : A quick field or laboratory staining scheme for the differentiation of the major carbonate minerals. J Sed Petrol, v. 32, pp. 29-38.

ZHANG, YG. & FRANTZ, JD. (1987): Determination of the homogenization temperatures and densities of supercritical fluids in the systemNaCl−KCl−CaCl2−H2O using synthetic fluid inclusions. Chem Geol, 64:335–350.