Physical, chemical and biological characterization as support for water governance in a hydrogeological system of Colombia

Main Article Content

Juliana Ossa Valencia
Teresita Betancur Vargas
Jhon Camilo Duque
Angel Jose Cardona Pérez
Laura Pineda Zapata
Pedro Pablo Villegas Yepes
Vanessa Paredes Zúñiga
Carlos Molano Cajigas


Understanding the physical, chemical and biological system is an indispensable precondition to addressing groundwater management. This understanding is based on Conceptual Hydrogeological Models, which contain different interpretations and their validity is checked through the application of specific research techniques (numerical modelling, hydrochemistry, isotope hydrology,process evaluation and biological functions). This paper describes the experience carried out by an academic team that, together with entities responsible for the protection of waterresources, established strategic alliances to improve the knowledge of the hydrogeological system,providing new elements for governance. This study was carried out in the Urabá antioqueño zone, located north-west of Colombia. A complex aquifer system is located in the region,characterized by a series of permeable, semi-permeable and impermeable layers. In such alayered aquifer the determination of the physical, chemical and biological characteristics of the layers and their management are a challenge for researchers because groundwater represents a strategic resource for supplying the population and developing economic activities. Starting from the conceptual hydrogeological model, multiscale numerical modelling exercises have been carried out, enabling the characterization of local, intermediate and regional flow systems. In addition,by determining the natural background level, the concentration ranges of chemical compounds from natural sources were obtained, in order to detect future changes in water quality. It was also possible to examine the stygofauna, which allowed the recognition of different types of organisms (stygobits, stygophiles and stygoxens) associated with underground ecosystems.These scientific elements serve as a support for the management instruments such as the groundwater management plan that is important for water governance, ensuring its future sustainability.

Article Details

Original Scientific Papers


BOULTON, A.J., FENWICK, G.D., HANCOCK, P.J., & HARVEY, M.S. (2008): Biodiversity, functional roles and ecosystem services of groundwater invertebrates.– Invertebrate Systematics, 22/2, 103–116. doi: 10.1071/IS07024

CORPOURABA & UNIVERSIDAD DE ANTIOQUIA (2014): Actualización del Modelo Hidrogeológico Conceptual del Sistema Acuífero del Urabá antioqueño. Medellín.

DUQUE, J., BETANCUR, T., GARCIA, D., PALACIO, P., PAREDES, V., & VILLEGAS, P. (2016): Modelación de la geometría de un sistema acuífero complejo - multicapa. Caso de estudio: Urabá antioqueño, Colombia.– Revista Latino-Americana de Hidrogeología, 10/1, 7.

EDMUNDS, W.M., SHAND, P., HART, P. & WARD, R.S. (2003): The natural (baseline) quality of groundwater: A UK pilot study.–The Science of the Total Environment, 310/1–3, 25–35.

ENVIRONMENTAL SIMULATIONS INCORPORATED (2015): Groundwater Vistas Manual, from

HAHN, H.J. & MATZKE, D. (2005): A comparison of stygofauna communities inside and outside groundwater bores.– Limnologica - Ecology and Management of Inland Waters, 35/2, 31–44. doi: 10.1016/j.limno.2004.09.002

HARBAUGH, A. & MCDONALD, M. (1996): User’s Documentation for MODFLOW- 96, an update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model. Open-File Report, US Geological Survey, 96–485.

HOUNSLOW, A. (1995): Water Quality Data: analysis and interpretation, 1st. ed. Oklahoma, USA: CRC Press, 1995, 397 p.

IGAC & GOBERNACIÓN DE ANTIOQUIA (2007): Levantamiento semidetallado de las coberturas terrestres, Departamento de Antioquia. Bogotá.

JOYCE, S., HARTLEY, L., APPLEGATE, D., HOEK, J. & JACKSON, P. (2014): Multi- scale groundwater flow modelling during temperate climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden.– Hydrogeology Journal, 22, 1233–1249. doi: 10.1007/s10040-014-1165-6.

MALARD, F., DOLE-OLIVIER, M.J., MATHIEU, J. & STOCH, F. (2002): Sampling manual for the assessment of regional groundwater biodiversity. Protocols for the ASsessment and Conservation of Aquatic Life in the Subsurface (PASCALIS) 2001/1, 1–27.

MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE (2014): Guía para la Formulación de Planes de Manejo Ambiental de Acuíferos, Bogotá.

MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL (2006): Resolución 872 de 2006, Metodología para el cálculo del índice de escasez para Aguas Subterráneas. Bogota D.C.

OSSA, J. & BETANCUR, T. (2018): Hydrogeochemical characterization and identification of a system of regional flow. Case study: the aquifer on the Gulf of Urabá, Colombia.– Revista Facultad de Ingeniería, 89, 9–18. doi: 10.17533/udea.redin.n86a02

SHAND, P., EDMUNDS, W.M., LAWRENCE, A.R., SMEDLEY, P. & BURKE, S.(2007): The natural (baseline) quality of groundwater in England and Wales, p. 72.

TIONE, M.L. & BLARASIN, M. (2014): Cuaderno de estudios de aguas subterraneas: El acuifero como ecosistema I. (eds.): comunidades de invertebrados en aguas subterráneas y su relación con variables ambientales. Argentina, 2014/ 1, 1–21.

WWAP (United Nations World Water Assessment Programme) (2016): The United Nations World Water Development Report 2016.– Water and Jobs, Paris, p. 148.